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SUMMARY

The problem of finding the point in time at which a
known audio or video source (reference signal) appears in
a long audio or video source (input signal) is referred to as
a time series search, in contrast to a text string search. In a
time series search, a search can be performed quickly by
combining the audio and video, and then identifying several
search conditions using logical equations. Thus, in this
paper the authors describe the application of the time series
active search method, a method to search audio signals
proposed in the authors’ previous paper, to video searches.
Next, the authors propose an efficient algorithm for AND
searches and OR searches of reference signals. In addition,
the authors propose a multimodal AND search which com-
bines audio and video. The proposed algorithms are faster
than combining the results of searches performed individu-
ally. For instance, in an OR search of a reference signal,
when the mutual similarity in the reference signals is above
0.8, five reference signals can be searched in a search time
that is 1.2 times faster than searching one reference signal.
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1. Introduction

In recent years, multimedia data has come to flow all
around us in vast quantities. As a result, the need for
retrieval technologies and search technologies for multime-
dia is increasing.

Here, retrieval refers to designating various condi-
tions related to the content of the images and sounds to be
found, then acquiring from a database or long-term materi-
als specific sounds and images that meet these conditions.
Retrieval is also referred to as content retrieval. There have
been many reports on research related to audio and video
content retrieval [1–7]. On the other hand, a search refers
to finding out where specific sounds and videos (reference
signals) are located in a database or lengthy materials (input
signal).

The focus of this paper is on quick search technolo-
gies. In the same way that a high-speed text string search
algorithm plays a vital role in handling text data, a quick
time series search algorithm is very important for handling
multimedia data. In practice, for instance on the Internet,
high-speed time series search methods are needed to pre-
vent illegal use of music, video, and other copyrighted
materials. In addition, if a quick time series search method
is available, program titles and commercials, as well as
other particular sound and video broadcast dates and times
can be picked up in a short period from lengthy television
broadcast data.

The authors have already proposed a time series
active search method, a method for quick searches of audio
signals, in a previous paper [8]. However, in order to
increase the usability of a time series search, (1) the audio
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and video should be searchable in any combination and (2)
various search conditions should be usable quickly by using
logic (AND/OR).

Thus, the authors propose a basic algorithm to
quickly search a time series flexibly in this paper. Section
2 describes the new visual characteristics in addition to
explaining in brief the time series active search method.
Section 3 discusses the OR search for reference signals, and
Section 4 discusses the AND search for reference signals,
both used to reduce the number of references. In Section 5,
the AND search for modality is discussed for when audio
and video synchronized to an input signal, that is, a multi-
media AND search, is used. Section 6 offers an experimen-
tal evaluation of the validity of the method discussed in
earlier sections, and Section 7 presents conclusions.

2. Time Series Active Search Method

2.1. Outline of the algorithm

The most fundamental method for a time series
search is to perform signal detection [9] based on the
correlation of features extracted from the signal itself
(audio and video). However, this method is limited in that
considerable time is required when using lengthy signals,
and so some form of higher-speed method is needed. If
audio and video information is converted to text and sym-
bols during voice recognition and object recognition, and
then a text string search is performed during retrieval, the
search can be effected quickly. Under current recognition
technology, however, the precision of conversion to text and
symbols is not necessarily sufficient. Although there is a
method which converts the signal to a string of symbols
using a vector quantization (VQ) method, under a method
that performs direct references of VQ symbol pairs, consid-
erable processing time is required, as will be explained in
Section 6.

In Ref. 8, the authors proposed a method for a time
series active search, a high-speed algorithm for acoustic
signals. This method features the use of histogram pairs for
VQ symbols. The histogram is a cumulative feature, and so
is not readily affected by variations in the signal. In addi-
tion, referencing the histogram pairs involves less compu-
tation for the referencing compared to direct referencing of
the feature pairs [10], and so useless referencing can be
skipped by finding the areas for which referencing is not
needed along the time axis. The authors have reported that
as a result of these effects, search precision sufficient for
practical purposes can be maintained, while search speeds
several hundred times faster than methods based on internal
products for spectrum feature vectors can be obtained.

Below the time-series active search method is out-
lined. Figure 1 shows the flow of processing. First, the

feature vectors for the reference signal (the short signal used
for the search key) and the input signal (long signal) are
extracted. Next, vector quantization (classification) is per-
formed for the feature vectors within the time window that
is the same size for both the reference signal and the input
signal, and a histogram is created by counting the number
of times each quantized symbol appears. Then, whether or
not the reference signal appears is determined by whether
or not the similarity between the histograms exceeds a
previously set value (this is called the search threshold). At
this point, the time width (width that can be skipped) over
which the search can be skipped in the time direction can
be found from the similarity value and the set value. As a
result, the window can be shifted to this extent with respect
to the input signal and the search can be continued.

This algorithm does not depend on a particular fea-
ture vector or its quantization method, but rather can use
various different ones. In addition, the similarity between
the histograms can be defined in a variety of ways. Among
these the authors have focused on the histogram weighting
in particular. The weighting SIR for the histograms HI and
HR can be defined as 

Here, HI and HR are histograms for the input signal and the
reference signal, and hIl and hRl are the numbers of feature
vectors quantized by the l-th symbol. Also, L is the size of
the VQ symbol width, and D is the length of the reference
signal (total number of feature vectors derived from the
reference signal).

At this point, the skip width w can be found using the
following equation based on the upper limit for the similar-
ity:

Fig. 1. Overview of the time-series active search.

(1)
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Note that floor (•) represents the undercut, and θ the search
threshold. Where the similarity exceeds θ, a complete
search is performed (the time window is shifted one whole
unit).

In Eq. (1), the reason for using the similarity defini-
tion based on the histogram weighting from among all the
definitions that can be conceived is: (1) the similarity cal-
culation is simple; (2) the upper limit for the similarity in
the histogram obtained by shifting the time window can be
found using a simple computation; (3) it has already been
used for object recognition in images, and the results have
been favorable [11–13]. Note that Sugiyama has considered
the time series [14] for the upper limit of the similarity and
the definition of similarity in the time series active search
method.

2.2. Acoustic features

The conditions required for the feature vectors in the
time series active search include good discrimination per-
formance (similarity is high in the target area, and low in
nontarget areas), robustness (minimally affected by the
recording conditions for sound or images, or noise), and a
reasonable amount of computation for feature extraction. 

In consideration of these points, the short-term power
spectrum for the feature vector used in this paper is found
while shifting analysis frames using a bandpass filter, and
then the spectrum is normalized for the frequency channel.
In other words, the acoustic feature vector f(k) can be
written as

f(k) = (f1(k), f2(k), . . . , fV(k)) (3)

Here, k is the discrete time (k = 1, 2, . . .) which represents
the position of the analysis frame, and V is the number of
dimensions for the feature. Each element of f(k) is

fj(k) = α(k) Yj(k) (4)

Here, Yj(k) is the average of the square of the analysis frame
for the output waveform of the j-th bandpass filter. In
addition, α(k) is the coefficient used for normalization, and
is defined as

2.3. Video features

The time series active search method enables
searches for video (time series pictures) by using video

features [15]. In this paper, after considering the robustness
with respect to the differences in characteristics in various
video machines, the authors focused on brightness. In other
words, the video feature vector g(k) can be written as

g(k) = (g1(k), . . . , gW(k)) (6)

Here, k represents the time for the frame, and the subscript
with g, the breakdown number for the W subimages the
image in each frame is broken down into. gj is the value of
the brightness for each pixel averaged and normalized in a
subimage:

However,

Here, Ω is the set of pixels p in the i-th subimage, and E
represents the average of 2. In addition, with the RGB
values for the pixel p expressed as rp, gp, bp,

xp = 0.299rp + 0.587gp + 0.114bp (9)

This is a relational expression for RGB values and in the
NTSC format.

3. OR Searches for Multiple Reference
Signals

Applications for a time series search might include
counting the number of times a particular commercial or
song appears in a data which stores television broadcasts or
radio transmissions, or a search engine for acoustic signals
on the Internet. Such uses frequently include performing
searches with respect to a large number of reference signals
(OR searches). For instance, when performing a count of
the commercials in broadcast data, even if the focus is on
commercials for the same product, ordinarily several simi-
lar commercials which are slightly different are broadcast
over the same time period. In addition, for the number of
times a song is used as well, often people want to search for
several instances of several songs at the same time. Thus,
the purpose of this section is to explain a method for
reducing the amount of reference computation even when
repeating the same search when performing an OR search
on multiple reference signals with respect to one input
signal.

Let us assume that the histograms HRj are created
from the N reference signals Rj (j = 1, 2, . . . , N), then the
histogram HI is created from the position of the current time
window for the input signal I. Note, however, that we will

(2)

(5)

(7)

(8)
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assume that the total count Dj for HRj is always equal, and
that Dj = D. Now, for HRm and HI for which j = m, the
similarity SIRm is obtained using the calculations in Eq. (1).
The authors are interested in finding the upper limit for SIRj

making specific reference to HI and HRj (j ≠ m). Thus, when
considering the upper limit for SIRj, 

SIRj L 1 – [SIRm – SRmRj] (10)

can be shown to be valid (see the Appendix).
Given this, the OR search for multiple reference

signals can be performed as shown below.

(1) The similarity for reference signal pairs is calcu-
lated for all combinations as a preprocess.

(2) The current position is set to the start of the input
signal. (Search process begins here.)

(3) The reference signal for which the skip position
is closest to the current position is selected, and the current
position is set to that skip position. 

(4) The selected reference signal and the input signal
at the current position are compared, and the similarity is
found.

(5) Based on the resulting similarity, the skip widths
for all of the reference signals are updated.

(6) Return to (3).

As a result, the number of instances of referencing
during the search process can be reduced to below when
reference signals are referenced individually. Note that
when Dj is not equivalent, if D is used as the minimum for
Dj, then the above argument will hold for the subspace of
length D.

4. AND Searches for Multiple Reference
Signals

An AND search for multiple reference signals repre-
sents finding the interval with a similarity that exceeds the
search threshold value for any of Rj(j = 1, . . . , N) among
the input signals when multiple reference signals R1, . . . ,
RN are positioned on the time axis with the time delays τ1,
. . . , τN since the start time. The length td of the interval
being searched is

Here, Dj represents the continuous time for Rj. If the overall
similarity S for the time interval td is defined as follows, the
problem becomes searching for places where S exceeds the
search threshold:

Here, Sj is the j-th reference signal, and is the similarity with
the interval which corresponds to the input signal.

The above is also important in an AND search of
reference signals as well. In the time series active search
method, although affecting small changes in the signals is
difficult due to referencing with the accumulated features,
the time structure is stored as a time series, and as a result,
distinguishing the differences in the order of appearance
tends to be difficult. In such cases, if the reference signals
can be broken down and an AND search performed on each
block, then accurate distinctions can be made.

The basic approach for an AND search is to perform
a search in order for each reference signal. In this paper this
approach will be referred to as the sequential method. First,
the j-th skip width wj for the current position in the total
time window (length td) is found. Then, the skip width w
for the total time window 

can be found. Based on Eq. (12), if any of Sj is below θ, then
S must also be below θ. As a result, S cannot exceed θ even
if the time window is moved as much as possible for j in wj.
In practice, skipping the total time window immediately
when Sj which does not satisfy the search threshold value
θ usually allows for fewer reference computations as com-
pared with referencing every j. In this paper this approach
shall be referred to as the sequential interrupt approach.

As an aside, when performing AND searches for
several reference signals broken down in terms of time from
one original reference signal (in other words, when several
reference signals that are adjacent to each other in terms of
time have an AND search performed on them), 

can be established (see the Appendix). Here, SA is the
similarity for the original reference signal, and Sj is the
similarity for the broken-down reference signals. This
means that the part for which the similarity exceeds the
threshold value for the AND search is not skipped ever, even
during a search of the original reference signal. As a result,
an independent search of the original reference signal
should be performed first, and then only the necessary
portions should be compared for each reference signal. This
will be referred to as the merged method in this paper.

When combining the same reference signal and input
signal, both the merged method and the sequential method
(or the sequential interrupt method) will on average have
few reference computations. For instance, if a reference
signal is broken down into N equal parts, the conditions 

(11)

(12)

(13)

(14)

(15)
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can be calculated using

with wA as the skip width for the merged method. Equation
(16) does not always hold, however. If we assume that the
similarity for each segment is uniform [in other words, minj

(Sj) = SA], then Eq. (16) will hold for SA L θ. Given this, in
many cases the merged method will be more useful than the
sequential method.

5. Multimodal AND Search

In the previous sections the authors have discussed
OR searches and AND searches for several reference sig-
nals with respect to one input signal. In addition, however,
in many cases people want to perform OR searches or AND
searches for reference signals which correspond to several
synchronous input signals. Here, for multimodal AND
searches in particular, in other words for searches of audio
and video signals which are synchronized, we will evaluate
searching for locations where either reference signal is
similar.

In a multimodal AND search, the similarity S is
defined for all input signals as the minimum value among
the similarity Sj for each input signal, just as was done for
an AND search of several reference signals. Then, the skip
width wj found for each input signal is calculated in real

time. By using the largest skip width in real time, the
number of references can be lowered to below when search-
ing each input signal separately. This is shown in Fig. 2. 

6. Experiments

6.1. Video features

First, experiments on search speed and search preci-
sion were performed with respect to the video charac-
teristics described in Section 2 in order to evaluate the
effectiveness of the video features. Table 1 lists the specifi-
cations of the workstation used in the experiment.

6.1.1. Search speed

In order to evaluate the search speed, the authors
measured the time required to search for a particular 15-sec-
ond commercial among 6 hours worth of images in a
television broadcast.

First, the authors recorded 6 hours of a private televi-
sion network’s broadcasts using a home VCR (VHS, HiFi,
3x mode). Next, the authors imported the video to the
workstation mentioned by playing back the recorded tape.
In addition to importing the 6 hours for use as an input
signal, 10 different 15-second commercials were selected
and played back randomly from the same tape for use as a
reference signal, then imported separately from the input
signal. In both cases, the import was performed at a frame
rate of 29.97 Hz with uncompressed RGB and a screen size
of 80 × 60. Two bins were used for each dimension in the
feature vector. Also, W was set to 12 (divided into 4 for the
horizontal and 3 for the vertical).

The time required for the search consists of (1) the
time required to extract features (the feature extraction
time), (2) the time required for vector quantization of the
feature vector (vector quantization time), and (3) the time
required to execute the search using the results of vector
quantization (the search execution time, in other words the
time required to create the histogram, calculate the similar-
ity, and repeat the window movements). Note that the time

(16)

Fig. 2. Skip width example in the search combining
audio and video (multimodal AND search).

Table 1. Specifications of the workstation used in the
experiments

Name of model SGI O2

CPU R10000 (250 MHz)

Memory 384 MB

OS IRIX Release 6.3

Compiler MIPSPRO C Compiler ver. 7.00
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in the discussion below was measured using CPU time.
CPU time appears to vary by several percent with each
measurement, and so below the average value for measure-
ments taken five times is used.

For (1) the feature extraction time, the CPU time
required to calculate the features from a 6-hour input signal
and 15-second reference signal was about 650 seconds. In
other words, feature extraction can be performed in about
3% of real time. Therefore, if processing is performed at the
same time as the signal is brought into the computer, then
features can be extracted at a 3% CPU load.

For (2) the vector quantization time, the CPU time
required for vector quantization of the 6-hour and 15-min-
ute feature vector was about 0.86 second. This represents a
measurement of the time for processing using memory after
all the feature vectors have been loaded into memory.*

For (3) the search execution time, Table 2 shows the
results of the measurements. The search execution time
depends on the reference signal, the input signal, and the
search threshold value. 

The CPU time shown in Table 2 is the average value
of measurements taken five times for the ten reference
signals (commercials). In this experiment, the threshold
value was set to θ = 0.6. Table 2 shows that the number of
references in the proposed method was lowered on average
compared to when a total search was used (ratio of number
of references). Note that in this experiment, the authors
confirmed that the search results for all of the ten commer-
cials were correct (no search leaks or extra searches, and a
time difference in the search results of less than 1 second).

For reference, Fig. 3 shows an example of the pattern
of changes of time of the similarity in this experiment
(when using a commercial as the reference signal). The
white circles represent time points for a search, and the
dotted line represents the search threshold.

Note that a method for a direct comparison with the
VQ signal seen as a character string would be to count in
sequence the rate of corresponding VQ signal pair matches.
The search execution time in this instance was about 2.4
seconds using the settings in this experiment. This is about
12 times greater than for the proposed method.

6.1.2. Search precision

In order to investigate the search precision of the
proposed method, the authors performed an experiment
using a separate recording of a television broadcast. First,
the authors recorded a television broadcast using the same
method as was used for the first experiment. They edited it
to link together distinct commercials into a 1-hour piece.
This was done because using materials in which the same
image does not appear twice was better for automating the
experiment. This video tape was played back, and the
images were divided and imported into a workstation. One
portion was used as the reference signal (it was segmented
into set time lengths at random locations), and the other was
used as the input signal for searches. An experiment was
also conducted for when black-and-white Gaussian noise
was added for the RGB values in the input signal.

In this experiment, the length and SN ratio for the
reference signal were used as parameters. The SN ratio was
controlled by setting the noise distribution with respect to
the average of the square of the RGB values for the 1-hour
input signal. A search was performed 200 times under the
same experimental conditions, and the precision was meas-
ured. Precision was evaluated using the average of the
precision rate and the recall rate. Here, the precision rate is
the rate of correct results among the search results output,
and the recall rate is the rate of search results output in what
was supposed to be output. The precision rate and the recall
rate vary depending on the search threshold set. In this
experiment, the search threshold was varied by controlling
c in the following expression:

θ = m + c σ (17)

Table 2. Search speed based on the image features

Search execution
time Speed

improvement

Ratio of
number of
references

Reference

Total
search

Proposed 
method

22.5 s 0.20 s 112 times 1/207 Figure 3

Total search refers to a search in which the skip width is
set to 1.

Fig. 3. Search result by the image feature. The
horizontal axis shows the time, and the vertical 

axis shows the similarity (0–1).

*In the setup in this paper, one 12-dimensional feature vector is stored in
12 bytes of memory, and as a result the feature vector for 6 hours of input
takes up 7.8 MB of memory net.
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Here, m and σ are the average and the standard deviation
for the similarity gathered by sampling the input signal for
a given reference signal and then calculating the similarity
beforehand. Equation (17) was found experimentally dur-
ing preparatory experiments. Also, in Eq. (17), when θ
exceeds 0.9 it is set to 0.9, and when it is less than 0.1, it is
set to 0.1. In this experiment, the value of c in Eq. (17) was
set during 200 iterations, and by adjusting this steady value,
a value which maximizes the precision became the evalu-
ation value. 

Equation (17) represents setting θ to different values
in consideration of the distribution of similarity for individ-
ual reference signals. Note that a specific value for c in this
experiment ran in a range from 4.8 to 23, and as the noise
power grew, the value of c which maximized the precision
tended to be smaller. 

The other input and search parameters were the same
as found in the experiment in the previous section.

Figure 4 shows the results of the experiment. When
the reference signal was 15 seconds, no search leaks or extra
searches occurred while the SN ratio was 2 dB or lower. In
addition, when the SN ratio was 30 dB or higher, even when
the reference signal was 2 seconds, a search precision of
above 99% was obtained. 

Based on these experiments, it is clear that good
search precision and a search speed similar to that found in
searches of acoustic signals can be obtained for video. Note,
however, that the noise seen in real-world video sets fre-
quently is far removed from black-and-white noise. Conse-
quently, the results of the experiment on search precision
described above cannot be interpreted as is for tolerance for
noise in a real-world video. 

6.2. OR search of multiple reference signals

The authors performed an experiment in order to
explore to what extent the proposed method increases the

speed of an OR search compared to searching multiple
reference signals individually, The algorithm used for the
OR search and the AND search described in this paper can
be used in the same way when searching for video or audio.
Here an example of an audio search is given. In other words,
in this experiment, the audio signal from 6 hours’ worth of
television broadcasts is used as the input signal, and five
15-second signals are used as the reference signal. Because
the proposed method is the same as when comparing refer-
ence signals individually in terms of precision, the search
speed (search execution time) and the number of compari-
sons are compared.

Given the discussion in Section 3, the extent to which
an OR search can be made more efficient by the proposed
method depends on the precision among the reference
signals (mutual similarity). Thus, five reference signals are
created by connecting the shared acoustic signal (part of a
particular commercial) and the acoustic signal that is not
shared, then the mutual precision is regulated by controlling
the length of the shared part. In addition, the input signal is
a signal that does not include the acoustic signal used to
create the reference signal.

The parameters for the search are: sampling fre-
quency = 11.025 kHz, number of feature dimensions = 7,
length of analysis frame = 60 ms, shift width of analysis
frame = 10 ms, number of bins in each feature dimension
= 3, search threshold θ = 0.8.

Figure 5 shows the results of the experiment. The
thick dashed lines represent the total search execution time
and the total number of comparisons when searching five
reference signals individually, and the thin dashed line
represents 1/5 of that. In Fig. 5, the number of comparisons
and the search execution time are both values from the five

Fig. 4. Search accuracy based on the image features.
Fig. 5. Number of matches and CPU time in the OR

search with 5 reference signals.
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reference signals, including the prior comparisons among
the reference signals. As is illustrated in Fig. 5, when the
average mutual similarity is close to 1, the search can be
performed with a number of comparisons and in a search
execution time that approaches a search of one reference
signal. For instance, when the average mutual similarity is
0.84, the number of comparisons is 1.5 times greater and
the search execution time is 1.1 times greater than that when
one reference signal is searched. In addition, when the
mutual similarity falls and the number of comparisons
approaches that of individual searches, the search execution
time falls to 0.47 times that of an individual search. This is
thought to be due to the cost of creating a histogram for the
input signal being lower for an OR search compared to the
total in an individual search. 

In the proposed method, the number of comparisons
necessary to compare reference pairs is N(N – 1)/2 for N
reference signals. When there are five reference signals, as
was the case in this experiment, the number of comparisons
was 10, sufficiently low to be ignored. Note, however, that
as N rises, the number of comparisons rises on the order of
the square of N. For instance, when there are 1000 reference
signals, roughly 500,000 comparisons will be required to
compute the similarity among reference signals. In an indi-
vidual search, about 2500 comparisons are needed to com-
pare one reference signal, and as a result about 250,000 are
needed for 1000. When the mutual similarity between
reference signals is low (for instance, 0.2), a total of about
3 million comparisons are estimated to be necessary in the
proposed method. 

6.3. AND search of multiple reference signals

Using experiments the authors confirmed the number
of comparisons and the search speed (search execution
time) when performing AND searches of multiple reference
signals. As was the case for the video search experiment in
Section 6.1, the video signal from 6 hours of television
broadcasts was used as the input signal, and 15 seconds of
10 commercials selected at random were used for the
search. Each commercial was broken into three equivalent
lengths so as to avoid duplication and used as three refer-
ence signals. AND searches were then performed. The
search parameters were the same as in Section 6.1.

Table 3 shows the results of measurements for the
number of matches and the search execution time. For all
cases, (a) sequential method, (b) sequential interrupt
method, and (c) merged method, the number of matches
was reduced compared to when performing an individual
search for three reference signals. Note that the search
results for (a), (b),and (c) were the same [when performing
the searches individually, because the reference signals
were different, the results of (a) to (c) cannot be compared].

The reduction in the number of matches in (a) compared to
an individual search is the result of a maximum in Eq. (13)
being used. In this experiment, the effect of (c) (the merged
method) was most significant among the three methods (a)
to (c).

On the other hand, Fig. 6 shows the similarity for
when dividing a commercial into three parts and perform-
ing an AND search. This clearly showed that compared to
the case in Fig. 3 of searching all 15-second commercials
as one reference signal, the similarity in sites that were not
correct was much lower in Fig. 6, and the margin in the
similarity settings was much higher.

6.4. Multimodal AND search

The authors measured the number of matches and the
search speed (search execution time) for a multimodal AND
search. As in the experiments in the previous sections, the
audio and video signal from 6 hours’ worth of television
broadcasts was used as an input signal, and the video and
audio signal from 10 commercials 15 seconds long was
used as the reference signal. Note that in a typical commer-
cial search, searching for the audio or video alone would be
sufficient, and so performing a multimodal AND search had

Table 3. The number of matches and CPU time in the
AND search with respect to the reference signals

Type of search
Number of
matches 
(× 103)

Search
execution

time

Individual 22.49 1.40 s

(a) AND (sequential method) 21.86 1.43 s

(b) AND (sequential interrupt
  method)

 7.52 0.34 s

(c) AND (merged method)  2.63 0.20 s

Fig. 6. Search results of the AND search with three
reference signals.
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little meaning. Rather, the multimodal AND search seems
likely to be used when trying to narrow search results using
both audio and video when a large number of search result
candidates have been found for audio or video alone. Thus,
in this experiment the search threshold θ was set low at 0.5
s as to yield more search results in a single modality. Note
that in this experiment, when a skip width greater than a set
level was found for either the audio or the video (set to 1.5
seconds based on preparatory experiments), the match in
the other modality at the same time window was omitted.

The results of the experiment are shown in Table 4. It
is clear that as a result of the proposed method, the number
of matches and the search execution time were both reduced
compared to either modality alone. Compared to the sum
of performing searches individually, the number of matches
for the AND search was about 21%, and the search execu-
tion time was about 28% lower.

7. Conclusion

In this paper the authors proposed a method to exe-
cute an AND search, OR search, and multimodal AND
search of multiple reference signals efficiently, in addition
to describing how to apply the time series active search
method to an audio-visual search. In the OR search of the
reference signal, the authors showed that by searching
reference signal pairs beforehand, the number of compari-
son matches when searching for similar reference signals
could be reduced compared to performing searches indi-
vidually. In addition, when the search speed was increased,
and especially when the average mutual similarity between
reference signals was above 0.8, an OR search for five
reference signals could be performed in a search time less
than 1.2 times that of a search for one reference signal. Also,
in AND searches of reference signals, the authors showed
experimentally that a search could be performed efficiently
by first merging adjacent segments and searching them. 

The AND search and the OR search being evaluated
in this paper are thought to be fundamental for the creation
of flexible, convenient searches of multimedia data among

the text search tools in the UNIX environment, for instance
the grep family of tools. In the future the authors plan to
move forward with analyses of search methods that allow
deformation and variation to signals while maintaining the
characteristics of a high-speed search.
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APPENDIX

1. Proof for Eq. (10)

Figure A.1 shows the relationship between similari-
ties. At present, SIRm has just been obtained by matching the
m-th reference signal and input signal. Also, SRmRj is calcu-
lated and determined beforehand.

(i) When SIRm L SRmRj

This is easy to understand if we consider a case in
which the m-th reference signal and the j-th reference signal
are very similar. 

Among the elements of HRm (feature vector included
in HRm), the set which contributes to the similarity with HI

is expressed as {HRm ∩ HI}, with the number of elements
being |HRm ∩ HI|. As such, based on Eq. (1),

|HRm ∩ HI| = DSIRm (A.1)

In the same fashion,

|HRj ∩ HI| = DSIRj (A.2)

Now given that SIRm L SRmRj, an inclusive relationship
can be established as shown in Fig. A.2. The left side of Fig.
A.2 represents the inclusive relationship between HRm and
HI defined by the matching. Here, when considering when
the inclusive relationship for HRj results in |HRj ∩ HI| being
a maximum, the conditions (1) the elements of {HRm ∩ HI}

are all included in HRj, and (2) among the elements of HRj,
the elements not in {HRm ∩ HRj} as previously determined
by the number of elements (the hatched part of Fig. A.2)
contribute to the similarity with all HI. In other words, this
occurs when HRj is in an inclusive relationship as shown by
the thick lines on the right of Fig. A.2. Expressing this in
an equation yields

Therefore, based on Eqs. (A.1) and (A.2),

SIRj L SIRm + (1 – SRmRj) (A.4)

(ii) When SIRm M SRmRj

This is easy to understand if we consider a case in
which the m-th reference signal and the j-th reference signal
are barely similar. 

Using the same approach, the inclusive relationship
in Fig. A.3 can be established. Therefore, the conditions in
which |HRj ∩ HI| reaches a maximum are (1) the elements
of {HRj ∩ HRm} all being included in HI, and (2) the
elements that are not in {HRm ∩ HI} among the elements in
HI (hatched part of Fig. A.3) all contributing to the similar-
ity with HRj. In other words,

Fig. A.1. Relationship between the similarities.

Fig. A.2. Relations between histograms (1).

Fig. A.3. Relations between histograms (2).

(A.3)
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|HRj ∩ HI| L |HRm ∩ HRj| + (D – |HRm ∩ HI|) (A.5)

holds. Therefore,

SIRj L SRmRj + (1 – SIRm) (A.6)

Equation (10) results when Eqs. (A.4) and (A.6) are brought
together. (End)

2. Proof for Eq. (14)

If the lengths of the individual broken down segments
are designated D1, D2,. . . , DN, then in the histogram for
before the breakdown and the histograms for each break-
down, 

DSA = D1S1 + D2S2 + ⋅ ⋅ ⋅ + DNDN (A.7)

can be established for the number of elements contributing
to the similarity with the input signal. Each segment is
adjacent, and as a result

is evident [note that Smin = minj(Sj)]. In other words,

SA M Smin (A.9)

and Eq. (14) holds. (End)
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