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PAPER

Incremental Unsupervised-Learning of Appearance Manifold with
View-Dependent Covariance Matrix for Face Recognition from
Video Sequences

Lina†a), Student Member, Tomokazu TAKAHASHI††, Ichiro IDE†, and Hiroshi MURASE†, Members

SUMMARY We propose an appearance manifold with view-dependent
covariance matrix for face recognition from video sequences in two learn-
ing frameworks: the supervised-learning and the incremental unsupervised-
learning. The advantages of this method are, first, the appearance manifold
with view-dependent covariance matrix model is robust to pose changes
and is also noise invariant, since the embedded covariance matrices are cal-
culated based on their poses in order to learn the samples’ distributions
along the manifold. Moreover, the proposed incremental unsupervised-
learning framework is more realistic for real-world face recognition appli-
cations. It is obvious that it is difficult to collect large amounts of face
sequences under complete poses (from left sideview to right sideview) for
training. Here, an incremental unsupervised-learning framework allows
us to train the system with the available initial sequences, and later up-
date the system’s knowledge incrementally every time an unlabelled se-
quence is input. In addition, we also integrate the appearance manifold with
view-dependent covariance matrix model with a pose estimation system for
improving the classification accuracy and easily detecting sequences with
overlapped poses for merging process in the incremental unsupervised-
learning framework. The experimental results showed that, in both frame-
works, the proposed appearance manifold with view-dependent covariance
matrix method could recognize faces from video sequences accurately.
key words: appearance manifold, view-dependent covariance matrix, in-
cremental learning, video-based face recognition, eigenspace

1. Introduction

Face recognition has long been an active area of research.
Over the years, numerous works have been proposed that
focus on recognizing 3D objects and human faces from still-
images, such as [1]–[11]. Recently, video-based face recog-
nition has attracted much attention since face recognition
using video presents various advantages and also challenges
over still-image based recognition.

For an efficient video-based face recognition process,
first, every image (frame) in a video sequence is input
in a feature extraction module, so that it becomes a low-
dimensional vector in a feature space. One most widely
used feature extractor in the pattern recognition field is the
Principal Component Analysis (PCA) with its eigenspace
representation [1], [2]. In a video, face images may vary
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significantly due to environmental changes, such as light-
ing condition, pose, facial expression, etc. In addition, var-
ious degradation effects might also influence the images in
a video sequence, such as low-quality video and cropping
errors due to inaccuracies of a tracking system. Therefore, a
robust recognition system should be able to handle various
image variations.

It is well known that an appearance manifold could
capture image variations, especially pose changes, in
eigenspace. Addressing various problems, many appearance
manifold models have been proposed, such as the simple
manifold [3], [4], the probabilistic appearance manifold [5],
[6], the layer-transparent manifold [9], etc. Moreover, in our
previous work, we have introduced various models of ap-
pearance manifold with view-dependent covariance matrix
which could robustly recognize 3D objects from still-images
under various degradation effects [11].

In the past years, several works have reported the use
of appearance manifold for face recognition from video se-
quences. Among them, Raytchev and Murase [12] proposed
a pairwise clustering method which calculates the inter-
action levels (attraction and repulsion) of every input se-
quence. A merging or splitting process is then applied ac-
cording to the interaction’s decision. Zhou et al. proposed
a probabilistic approach which uses joint posterior distribu-
tion of motion vectors and estimates the temporal informa-
tion of video sequences by propagating the identity variables
over time [13]. Similar to [13], the work of Lee et al. in
[14], [15], utilized local linear models and a transition ma-
trix which propagates the probabilistic likelihood of the lin-
ear models to capture the temporal information. Meanwhile,
Liu et al. processed the temporal information of video se-
quences using the adaptive Hidden Markov Models (HMM)
method [16].

Proposing a different appearance manifold model from
the previous works, the novelty of our approach lies in
the scheme of embedding view-dependent covariance ma-
trices in appearance manifolds for recognizing faces from
video sequences in an incremental unsupervised-learning
framework. The advantages of this model are, first, the
appearance manifold with view-dependent covariance ma-
trix model is robust to pose changes and also noise invari-
ant since the embedded covariance matrices are calculated
based on their poses in order to learn the samples’ distribu-
tions along the manifold. Moreover, the proposed incremen-
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Fig. 1 Outline of the proposed video-based face recognition system.

tal unsupervised-learning framework is more realistic for a
real-world face recognition application. It is obvious that
it is difficult to collect large amounts of face sequences un-
der complete poses (from left sideview to right sideview)
for training purpose. Here, an incremental unsupervised-
learning framework allows us to train the system with the
available initial sequences, and later update the system’s
knowledge incrementally every time an unlabelled sequence
is input.

In addition, the integration of a pose estimation system
in the appearance manifold with view-dependent covariance
matrix model also plays an important role in improving the
classification accuracy, since, put in the terminology in [12],
the images of the same object under a different viewing con-
dition is different. Thus, it is clear that one is likely to obtain
the classification results based on the availability (similarity)
of a pose instead of its identity. Therefore, to increase the
classification accuracy of the system, the most similar pose
of a face in each manifold is searched (i.e. using a pose es-
timation system), before identifying the person. The pose
estimation system also helps the merging process in the in-
cremental unsupervised-learning framework to easily detect
video sequences with overlapped poses.

In this paper, we address a video-based face recog-
nition problem using the appearance manifold with view-
dependent covariance matrix in two learning frameworks:
the supervised-learning and the incremental unsupervised-
learning. Figure 1 shows the outline of the proposed video-
based face recognition system. In the supervised-learning
framework, the training samples are labelled and used to
represent the identity categories in the form of appearance
manifolds with view-dependent covariance matrices. Mean-
while, in the incremental unsupervised-learning framework,
the system first learns the initial categories through the ini-
tial manifolds and later updates its knowledge on identity
categories by learning the unlabelled input sequences incre-
mentally. Since the structure and the number of the category
(class) changes every time a new pattern comes into the sys-
tem, it is necessary to update the system’s knowledge, either
by constructing a new category or by modifying the struc-
ture of the existing categories through merging processes
between sequences which have some overlapped poses with
strong similarities.

We organized the rest of this paper as follows. Our
appearance manifold model and the classification process
for video-based face recognition in a supervised-learning
framework is described in Sect. 2. In Sect. 3, the de-
tailed classification process of video-based face recognition
in an incremental unsupervised-learning framework is pre-
sented. Experimental results and discussions are described
in Sects. 4 and 5, respectively. Finally, we concluded this
paper and described the future works in Sect. 6.

2. Video-Based Face Recognition in a Supervised-
Learning Framework (Framework 1)

Typically, a supervised video-based face recognition system
consists of two stages: training and classification. In the
training stage, a feature extraction module finds the appro-
priate features for representing the input patterns and the ap-
pearance manifolds are constructed to model the appearance
variation of each object. Here, since the objects are human
faces, the construction results of the appearance manifolds
are called “face manifolds”. Meanwhile, in the classification
stage, the classifier assigns the unlabelled input sequence to
one of the pattern categories which has the highest similarity
based on a distance measurement. The detailed procedures
of each module are described in Sects. 2.1 and 2.2.

2.1 Construction of Face Manifolds with View-Dependent
Covariance Matrices in Eigenspace

In the pattern recognition field, it is well known that
appearance-based approaches use sets of images in various
poses to represent an object. Here, the role of a feature
extraction module is to determine a low dimensional pat-
tern representation compared with the image space. One
widely used feature extractor is the Principal Component
Analysis (PCA) [1], [2], that computes k-eigenvectors with
the largest corresponding-eigenvalues to project the training
samples onto an eigenspace. The linear transformation of
the eigenspace representation is defined as:

q(p)
l (θ) = [e1, e2, · · · , ek]T (x(p)

l (θ) − c) (1)

where x(p)
l (θ) is the l-th sample image of person p with pose

θ, ei (i = 1, 2, · · · , k) is the eigenvector, c is the mean vector
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Fig. 2 Construction process of a face manifold with view-dependent co-
variance matrices.

of the training samples, and q(p)
l (θ) is the vector representa-

tion of image x(p)
l (θ) in the eigenspace. Note that the eigen-

vectors ei in Eq. (1) are used only for image projections into
the eigenspace, thus, are processed globally regardless to
their poses. Meanwhile, later in the construction process of
the face manifolds, the eigenvectors and the eigenvalues are
view-dependent, since they are derived from the covariance
matrix of each training-pose.

The construction process of a face manifold with view-
dependent covariance matrices is shown in Fig. 2. The input
for the construction process is x(p)

l (θ) which is the l-th sam-
ple image of person p with training pose θ. Next, the con-
struction process of a face manifold with view-dependent
covariance matrices consists of two steps:

Step 1. Calculation of covariance matrices: For each
training pose, a mean vector and a covariance matrix is cal-
culated. For this purpose, new images are generated by
adding noise to each image in video-captured sequences.
The type, level and number of the artificial noise are not
limited and could be applied freely in various forms, such as
geometric distortion (i.e. shift, rotation, etc.), quality degra-
dation (i.e. blur, salt and pepper noise, etc.), illumination
changes, etc.

Step 2. Interpolation of covariance matrices: In order to
obtain the mean vectors and the covariance matrices of the
untrained poses, interpolation processes are performed to
each pair of mean vectors and covariance matrices of two
consecutive training poses. For the mean vectors, the inter-
polation process is done by simply using one of the several
existing interpolation algorithms. Meanwhile, the interpola-
tion of the covariance matrices is done by interpolating the
corresponding eigenvectors and eigenvalues of two consec-
utive training poses (see the VCEI method [11] for details).

Fig. 3 Interpolation of the eigenvectors and the eigenvalues in a feature
space.

A brief description of the eigenvectors and eigenvalues
interpolation [11] is described as follows.

First, the matrices of eigenvectors E0 and E1 which
consist of pairs of eigenvectors e0 j and e1 j ( j = 1, 2, · · · , k)
and the matrices of eigenvalues which consist of pairs of
eigenvalues λ0 j and λ1 j ( j = 1, 2, · · · , k) of covariance ma-
trices Σ0 and Σ1 are formed. Next, in order to correspond the
axes, the eigenvectors of E0 and E1 are sorted based on their
eigenvalues λ0 and λ1 to form E′0 and E′1, respectively. The
same task for the eigenvalues are then performed to form
λ′0 and λ′1 from λ0 and λ1. Then, check and invert if the
eigenvectors satisfy e′0 j

T e′1 j < 0 so that the angle between
corresponded axes is less than or equal to π/2.

For covariance matrix Σx, the eigenvalues can be calcu-

lated by λx j =

(
(1 − x)

√
λ′0 j + x

√
λ′1 j

)2
( j = 1, 2, · · · , k) and

Ex = R(xφ)E′0 for the eigenvectors. Here, R represents an
interpolated rotation when 0 ≤ x ≤ 1 and φ = [φ1, · · · , φm]
represents the parameter vector of rotation angles to de-
fine the rotation matrix. Since the rotation angles always
come in pairs in the complex conjugate roots process, then
m = �k/2�.

The rotation matrix is defined by R(φ) = E′1E′0T

and diagonalized with the Special Orthogonal (SO) rule by
R(φ) = UD(φ)U† where U† represents a complex conju-
gate transpose matrix of U. The complex conjugate roots
are then processed by D(φ) = diag(eiφ1 , e−iφ1 , · · · , eiφm , e−iφm )
if n = 2m. Meanwhile, if n = 2m + 1, then D(φ) =
diag(1, eiφ1 , e−iφ1 , · · · , eiφm , e−iφm ) where eiφ = cos φ + i sin φ.
Finally, interpolate the rotation matrix R(xθ) and calcu-
late the covariance matrix for the untrained poses using
Σx = ExΛxEx

T with Λx = diag(λx). Figure 3 shows the
illustration of the interpolation of the eigenvectors and the
eigenvalues in a 2D feature space.

The output of the construction process of the face man-
ifold with view-dependent covariance matrix are the mean
vectors μ(p)(θ) and the covariance matrices Σ(p)(θ) of the
training poses and poses obtained by the interpolation.
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2.2 Classification of Face-Sequences

In the testing stage, unlike still-image recognition, video-
based recognition needs to integrate the classification results
of each frame to produce the decision of a sequence. Given a
face sequence S = [f1, f2, · · · , fh] in an eigenspace, the clas-
sification process of a face image fi (i = 1, 2, · · · , h) is based
on its similarity to the trained face manifolds Mp. Mean-
while, the final sequence’s classification decision is based
on the minimal cumulative distance of each fi ∈ S.

In this paper, we also propose the integration of a pose
estimation system to provide pose information of each test
image fi ∈ S for improving the classification accuracy and
also easily detecting sequences with overlapped poses for
the merging process later in the incremental unsupervised-
learning framework. Here, various existing algorithms can
be selected for developing the pose estimation system, since
it is fully independent from the classification system. In this
paper, the pose estimation system is based on the Nearest
Neighbor algorithm which basically classifies an input fea-
ture vector to a class with the nearest distance in a feature
space.

For classification purpose, first, a pose vector θ(p) =

[θ1, θ2, · · · , θg] which consist of g training poses of a face
manifold Mp is constructed. Then, the classification process
is defined as follows:

ϕi = pose estimation(fi) (2)

Once the pose ϕi of each unlabelled input image fi (i =
1, 2, · · · , h) is determined by a pose estimation system, the
normalization of the test image can be calculated by:

f′i = fi − μ(p)(ϕi) (3)

and the distance measurement of the input image is defined
by:

d f (p)
i =

⎧⎪⎪⎨⎪⎪⎩
(f′i)T

(
Σ(p)(ϕi)

)−1
(f′i) (ϕi ∈ θ(p))

0 (otherwise)
(4)

Equation (4) shows that the Mahalanobis distance is
calculated only when the pose ϕi of an input image existed
as a member of pose vector θ(p) of manifold Mp (defined as
an overlapped pose). On the other hand, when the pose of
the input image ϕi is not a member of θ(p), a zero value is
given to d f (p)

i as the distance of the input image fi to the
manifold Mp.

Finally, the classification decision of an input sequence
Si is made upon integrating the classification results of all
input images fi ∈ S. The identity p∗ is determined by finding
the manifold Mp with the minimal cumulative distance of all
fi ∈ S, as follows:

p∗ = arg min
p

⎛⎜⎜⎜⎜⎜⎜⎝
h∑

i=1

d f (p)
i

/
Noo(p)

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

where Noo(p) is the number of overlapped poses between
the input sequence S with manifold Mp.

3. Video-Based Face Recognition in an Incremental
Unsupervised-Learning Framework (Framework 2)

Considering the practical interest, a face recognition system
is expected to deal with unconstrain, dynamic and unpre-
dictable environments. The system should be able to cor-
rectly identify every input and learn it to update the sys-
tem’s knowledge on identity categories (persons). The pur-
pose of the incremental unsupervised-learning introduced in
this paper is to assign a set of unlabelled face sequences
into their corresponding identity categories (persons) in an
unsupervised manner. The input sequence can be assigned
to one of the existing categories or as a new identity cat-
egory. The major difficulty of this approach is in finding
the proper balance between not to overlook the existing cat-
egory structure and at the same time not to superimpose
a new structure. Our proposed approach is based on cen-
tral clustering which classifies an unlabelled input sequence
into an identity category according to its similarity to the
central feature of each category with prior guidance of a
pose estimation system. Figure 4 shows the summary of
the identity classification (clustering) algorithm in an incre-
mental unsupervised-learning framework, while the detailed
processes are described in the following sections.

3.1 Identity Classification (Clustering)

The classification process of a face sequence fi (i =
1, 2, · · · , h) in a sequence S = [f1, f2, · · · , fh] starts by mea-
suring the similarity of each fi ∈ S using Eq. (4). Next, a
threshold value β is defined in order to determine whether an
input sequence is classified to one of the existing categories

Fig. 4 Classification algorithm of an input sequence in an incremental
unsupervised-learning framework.
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(accepted) or assigned as a new identity category (rejected).
An input sequence is accepted being classified to one

of the existing category if the distance of every image in the
input sequence and its total distance are less than the thresh-
old value β. Otherwise, the input sequence is rejected and
assigned as a new identity category. The identity category is
determined as follows:

p∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arg min

p

⎛⎜⎜⎜⎜⎜⎜⎝
h∑

i=1

d f (p)
i

/
Noo(p)

⎞⎟⎟⎟⎟⎟⎟⎠ (Accepted)

P + 1 (Rejected)

(6)

The next process after the identity classification is to
construct the face manifold of the input sequence in order to
update the system’s knowledge. Here, the face manifold of
the input sequence is constructed using the same model with
the initial face manifolds by embedding the view-dependent
covariance matrix (see the construction process in Sect. 2.1).
Moreover, for each accepted result, it is also necessary to
perform a merging process between the manifold of the in-
put sequence with the existing manifolds which have the
same identity category. However, the manifold merging pro-
cess is not performed for any rejected result. The details of
the manifold merging process is described in the next sec-
tion.

3.2 Manifold Merging

In the manifold merging process, only the overlapped parts
of two face manifolds with view-dependent covariance ma-
trix will be merged. Therefore, it is necessary to determine
the overlapped parts of both manifolds by detecting the over-
lapped poses ωi. Fortunately, the detecting process of the
overlapped poses ωi can be performed easily by the help of
an integrated pose estimation system.

The merging process of two face manifolds with view-
dependent covariance matrix is done as follows. First, the
mean vectors μ(p∗)

i (ωi) of overlapped poses ωi are merged
through:

μ(p∗)
i,updated(ωi) = αμ

(p∗)
i,old(ωi) + (1 − α)μ(p∗)

i,new(ωi) (7)

Next, the covariance matrices Σ(p∗)
i (ωi) are merged using:

Σ
(p∗)
i,updated(ωi) = αΣ

(p∗)
i,old(ωi) + (1 − α)Σ(p∗)

i,new(ωi) (8)

where α is an updating weight value, μ(p∗)
i,old(ωi) and Σ(p∗)

i,old(ωi)
are the mean vectors and the covariance matrices of the ex-
isting manifold p∗ with overlapped poses ωi. μ

(p∗)
i,new(ωi) and

Σ
(p∗)
i,new(ωi) are the mean vectors and the covariance matri-

ces of the new constructed (input) manifold with overlapped
poses ωi.

4. Experiments and Analysis

We conducted several experiments to evaluate the perfor-
mance of the proposed method in recognizing human faces

from video sequences. For the experiments, we have col-
lected 60 motion videos of 20 persons with pose changes
from −90◦ (left sideview) to +90◦ (right sideview) from
the frontal pose. For each person, three motion videos are
taken in a different time under different conditions and are
represented in three datasets. In the preprocessing step,
first, the motion videos were trimmed with a frame rate of
30 frames/second, and images from a video sequence with
10◦ pose differences from each other were taken as a face
sequence. Here, the sampling processes of the face se-
quences were performed in order to obtain a same frame-
density condition within the face sequences, which is useful
for fair evaluations of methods. However, in a real system,
the sampling process is not necessary. Next, each image of
the face sequences were manually cropped and downsam-
pled to 32× 32 pixels image size, however, in a real applica-
tion system, a face tracking (cropping) system may be used
to automatically detect and crop the face images.

Figure 5 shows the samples of face sequences of four
persons from three datasets (Dataset 1: small face varia-
tions, Dataset 2: small face variations taken in a different
time, and Dataset 3: severe face variations). It is clearly
seen in Fig. 5 that the datasets contain many instances of
noise data, in the form of pose variations, natural expression
variations, and erroneous in face cropping (misalignments).
In the experiments, face sequences of Dataset 1 are used for
training, while face sequences of Dataset 2 and Dataset 3 are
used as testing data.

Fig. 5 Samples of face sequences; for each person: first row: Dataset 1
(small face variations), second row: Dataset 2 (small face variations taken
in a different time), third row: Dataset 3 (severe face variations).
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Fig. 6 Accuracy rates in recognizing faces from video sequences of Dataset 2 with various sequence’s
lengths in a supervised-learning framework.

The experiments were conducted in two frameworks:
supervised-learning and incremental unsupervised-learning,
in which each of them has varying degrees of difficulty. In
this paper, we compared the results of our proposed appear-
ance manifold with view-dependent covariance matrix (VC)
method with the simple manifold (SM) method (known as
the Parametric Eigenspace method in [4]). Both of these
methods used a manifold to capture pose variabilities of a
face. However, in the Simple Manifold (SM) method, an
appearance manifold was constructed based on the interpo-
lations of the mean vectors of samples and used an identity
matrix as the covariance matrix for each pose. Therefore,
the SM method can only capture the pose changes. Mean-
while, in the proposed VC method, a view-dependent co-
variance matrix was also embedded to the appearance man-
ifold. Therefore, the proposed VC method has the abilities
to capture pose variability and also learn the sample’s distri-
bution of each pose. Here, both the VC and the SM methods
were also combined with a pose estimation system using the
same Nearest Neighbor algorithm. The experimental results
are presented in the next sections.

4.1 Experiments in the Supervised-Learning Framework
(Framework 1)

In the first experiment in the supervised-learning frame-
work, we trained the system with 26 face sequences for each
of the 10 different persons in Dataset 1. Among these 26
face sequences, only one sequence was captured by a mo-
tion video, while the other 25 sequences were generated by
applying noise effects to the video-captured sequence. The
noise effects we applied in this experiment are the motion
blur effects which usually occur in the capturing process of
moving objects, and the shift and the rotation effects which
represent the erroneous face croppings and misalignments.
For the testing set, we partially took the face sequences from
Dataset 2 and Dataset 3 (which are different from the train-
ing set) and arranged them into 200 partial face sequences
for each of the 9 different sequence’s lengths. Here, one

sequence’s length represents 10◦ pose width. For face se-
quences with zero lengths, the identity recognition tasks
were performed based on the classification result of an in-
put image in the sequence (similar to the still-image based
recognition).

Figure 6 (a) shows the accuracy rates of the VC and the
SM methods when recognizing faces with 10 identity cate-
gories from video sequences of Dataset 2 with various se-
quence’s lengths in a supervised-learning framework. The
results in Fig. 6 (a) shows that the proposed VC method
gave higher recognition accuracies in all categories com-
pared with that of the SM method. Here, the longer the se-
quence’s length, the higher accuracies could be achieved by
the system, since a long sequence could usually give more
appearance variation information compared with a short se-
quence. The highest accuracy rate for the VC method was
98%, while the highest accuracy rate for the SM method
was only 67%. For a 20 identity category recognition task,
as depicted in Fig. 6 (b), the accuracies of the recognition
system decreased compared with that of the 10 identity cat-
egory recognition task. However, the proposed VC method
still outperformed the SM method, with 88% highest recog-
nition accuracy for the VC method, while the SM method
only achieved 45% as its highest recognition accuracy.

Furthermore, we also conducted an experiment to rec-
ognize faces from video sequences of Dataset 3 which con-
tains severe image variations. Table 1 summarizes the accu-
racy rates of the 10 identity category face recognition task
from video sequences with 8 sequence’s length in two con-
ditions: small face variation and severe face variation. It
could be well understood that the recognition accuracies of
all methods decreased when recognizing sequences with se-
vere face variations. However, the VC method could still
maintain its superiority on the SM method. Under severe
face variation conditions, the highest recognition accuracy
achieved by the VC method was 75%, while the SM method
gave only 67% accuracy as its highest recognition result.
For reference purpose, we also presented the accuracy rates
of the recognition system for each method when the pose in-
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Table 1 Accuracy rates of a 10 identity categories recognition task from video sequences with 8
sequence’s length in two conditions: small face variation and severe face variation in a supervised-
learning framework (The reference accuracy values, obtained when using pose information given by a
human, are presented in the brackets).

Method Accuracy of Dataset 2 with Accuracy of Dataset 3 with
Small Face Variations (%) Severe Face Variations (%)

Simple Manifold (SM) 67 (73) 67 (60)
View-dependent Covariance Matrix (VC) 98 (98) 75 (88)

Fig. 7 Accuracy rates in recognizing faces from video sequences with
various sequence’s lengths using various threshold values.

formation was given by a human, as shown as values within
brackets in Table 1.

All experimental results described above showed that
the proposed VC method outperformed the SM method in
the supervised-learning framework in various conditions,
such as various numbers of identity category, various num-
bers of sequence’s length, different levels of image variation
(small or severe), and different pose estimation techniques
(human estimator or system estimator).

4.2 Experiments in the Incremental Unsupervised-Learning
Framework (Framework 2)

In the incremental unsupervised-learning framework, the
system first learns the initial manifolds and later the ex-
isting manifolds are updated automatically by learning the
sequences which are input incrementally into the system.
Therefore, in this experiment, we first constructed 10 ini-
tial manifolds of 10 persons using 26 (1 original and 25
generated) face sequences of Dataset 1 per person. Next,
several parameters such as a threshold value β (see Fig. 4)
and a merging weight α (see Eq. (7) and Eq. (8)) are de-
fined experimentally. Figure 7 shows the accuracy rates
of the VC and the SM methods in recognizing short (1 se-
quence’s length), medium (4 sequence’s length), and long (8
sequence’s length) sequences with a human pose estimator
and using various threshold values. Based on the results in
Fig. 7, we set β = 2.0 and α = 0.5 as the optimal threshold
and update weight values for our face database.

Figure 8 presents the classification rates for rec-
ognizing faces from video sequences in an incremental

unsupervised-learning framework. The system was tested
with 1,800 face sequences with various sequence’s lengths
which belong to 20 persons (10 initial persons and 10
new persons). For the experiments in the incremental
unsupervised-learning framework, the evaluation parame-
ters were the accuracy rate, the false acceptance rate, and
the false rejection rate. The definitions of each evaluation
parameter are defined as follows:

• Accuracy rate: the ratio of the number of classes that
are correctly classified by the system to the total num-
ber of tests.
• False acceptance rate: the ratio of the number of pairs

of different classes that are incorrectly matched by the
system to the total number of match attempts.
• False rejection rate: the ratio of the number of pairs of

the same class that are not matched by the system to
the total number of match attempts.

In this paper, we presented each evaluation rate in a separate
figure in Fig. 8 in order to give a clear presentation of the
experimental results.

Figure 8 (a), Fig. 8 (b), and Fig. 8 (c) each show the ac-
curacy rates, the false acceptance rates, and the false re-
jection rates of the VC and the SM methods when recog-
nizing faces from video sequences in Dataset 2 with vari-
ous sequence’s lengths. The results in Fig. 8 (a) show that
the proposed VC method gave higher accuracy rates com-
pared with that of the SM method in all categories. Similar
with the results in the supervised learning framework, the
longer the face-sequences, the higher accuracy rates could
be achieved by the system. For the error rates, it can be
seen from Fig. 8 (b) that the false acceptance rates of the pro-
posed VC method were lower than that of the SM method.
Moreover, the false acceptance rates for the VC method de-
creased along with the increment of the sequence’s length.
On the contrary, the false rejection rates of the VC method
increased along with the increment of the sequence’s length.
Tracing back the proposed identity classification (cluster-
ing) algorithm in Fig. 4 where the distance of every image
in a face sequence should be less than the threshold value,
it could be well understood that the difficulty level of ful-
filling this criteria (being accepted) increases along with the
increment of the sequence’s length. On the other hand, the
false acceptance rate of the SM method increased along the
increment of the sequence’s length, while the false rejec-
tion rate of the SM method decreased along the increment
of the sequence’s length. In more detail, the false accep-
tance rates for the SM were nearly 100% for all categories,
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Fig. 8 Classification rates in recognizing faces from video sequences of Dataset 2 with various se-
quence’s lengths in an incremental unsupervised-learning framework.

Table 2 Classification rates in recognizing faces from video sequences with 8 sequence’s length in
an incremental unsupervised-learning framework (The reference accuracy values, obtained when using
pose information given by a human, are presented in the brackets).

Method Accuracy (%) False Acceptance (%) False Rejection (%)
Simple Manifold (SM) 34 (37) 100 (100) 33 (27)
View-dependent Covariance Matrix (VC) 83 (87) 0 (0) 35 (26)

which means that the SM method was not able to differen-
tiate new persons from the trained persons. This condition,
on the contrary triggers the decrement of the false rejection
rate.

Table 2 summarizes the classification rates for rec-
ognizing faces from video sequences of Dataset 2 with 8
sequence’s length in an incremental unsupervised-learning
framework, which also shows the highest recognition ac-
curacies achieved by both methods. The accuracy rate
achieved by the VC method was 83%, with 0% false ac-
ceptance rate and 35% false rejection rate. Meanwhile, the
SM method only gave 34% accuracy rate with 100% false
acceptance rate and 33% false rejection rate. For reference
purpose, we also presented the accuracy rates of the recog-
nition system for each method when the pose information
was given by a human, as shown as values within brackets
in Table 2.

It is clearly seen from all evaluation parameters in
Fig. 8 and Table 2 that the proposed VC method outper-
formed the SM method in all categories in an incremental
unsupervised-learning framework.

5. Discussion

In Sect. 4, we have shown the performances of the proposed
VC method and its comparisons with the SM method, where
all results showed that the VC method outperformed the SM
method in various conditions in both supervised and incre-
mental unsupervised-learning frameworks. In this section,
we focus and discuss in more detail the performance of the
proposed VC method in incremental unsupervised-learning
framework. As we have mentioned earlier, the advantage
of an incremental unsupervised-learning framework is that
the system could learn and update its knowledge automat-
ically as the unlabelled sequences are input incrementally

into the system. However, one critical point in the incre-
mental unsupervised-learning is that the classification abil-
ity of the system is highly dependent on the initial settings
(i.e. the threshold value, the updating weight, the number
of the initial manifold, etc.) and the condition of the input
sequences (i.e. the sequence’s length, the number of over-
lapped poses, the input order, etc.). Thus, using different
initial settings and/or processing different conditions of in-
put sequences could give different classification results.

Table 3 presents the classification rates of two experi-
ments which have the same initial settings but different con-
ditions of input sequences. For the initial setting, we con-
structed 10 initial manifolds of 10 persons, defined α = 0.5
and β = 2.0, and used the Nearest Neighbor algorithm as
the pose estimation system. In the testing process, the se-
quence’s length and the input order of the unlabelled se-
quences were set differently. In the first experiment, the
system relatively processed longer input sequences within
the range of 5–8 sequence’s length than in the second ex-
periment whose sequence’s length was within the range of
1–8. The number of unlabelled input sequences were 100
sequences (randomly input from 5 sequences for 20 persons)
which also shows how many times the system was updated.
From Table 3, it can be seen that for both experiments, the
VC method outperformed the SM method with 85% high-
est accuracy rate, 12% false acceptance rate and 18% false
rejection rate. Meanwhile, the SM method only gave 18%
accuracy rate, with 100% false acceptance and 64% false
rejection rates for both experiments.

Next, Fig. 9 shows the visualization of face manifolds
using the VC method with poses from −90◦ (left side-
view) to +90◦ (right sideview) from the frontal pose. Fig-
ure 9 (a) shows the visualization of a face manifold of a per-
son which was constructed from the sequences of Dataset 1
and Dataset 2 in a supervised-learning framework. Mean-
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Table 3 Classification rates of two experiments which have the same initial settings but different
testing conditions.

Exp Method Initial Sequence’s Identity Accuracy False False
Class Length Class (%) Acceptance (%) Rejection (%)

1 Simple Manifold (SM) 10 5–8 20 18 100 64
View-dependent Covariance Matrix (VC) 10 5–8 20 85 12 18

2 Simple Manifold (SM) 10 1–7 20 18 100 64
View-dependent Covariance Matrix (VC) 10 1–7 20 78 22 22

Fig. 9 Visualization of face manifolds of a person using the proposed VC method, (a) obtained in
a supervised-learning framework, (b–c) obtained in the incremental unsupervised-learning frameworks
from different unlabelled input sequences.

Table 4 Accuracy rates of a 10 identity categories recognition task from video sequences with 30◦
training pose differences between frames (sparse training sequences).

Method Training classes include samples of Accuracy (%)
PCA + Nearest Neighbor (NN) Training poses only 80
PCA + View-dependent Covariance (VC) Manifold (Training poses + Interpolation) 92
RBF Kernel PCA + Nearest Neighbor (NN) Training pose only 83
RBF Kernel PCA + View-dependent Covariance (VC) Manifold (Training poses + Interpolation) 84

while, Fig. 9 (b) and Fig. 9 (c) show the visualization of
face manifolds of a same identity (person) in the incre-
mental unsupervised-learning frameworks (the initial man-
ifolds were constructed from sequences of Dataset 1, and
later the unlabelled sequences of Dataset 2 were input in-
crementally to update the initial manifold). The input se-
quences for Fig. 9 (b) had a 7 sequence’s length, while, in
Fig. 9 (c), shorter sequences with 3 sequence’s length were
input. From Fig. 9, it can be seen that the constructed man-
ifolds in the incremental unsupervised-learning frameworks
are similar to each other and also to the construction result
of the manifold in the supervised-learning framework.

Finally, in order to emphasize the superiority of the
proposed method, the accuracy rates of the PCA and nonlin-
ear RBF Kernel PCA in combination with the simple Near-
est Neighbor (NN) classifier and the appearance manifold
with View-dependent Covariance (VC) are presented in Ta-
ble 4. For the combinations with NN, the training classes
included only the samples of the training poses. Mean-
while, for the combinations with VC, the manifolds with
view-dependent covariance matrix were constructed. Here,
constructing a manifold means attaining estimation of con-
tinuous poses by interpolating the classes (the mean vec-
tors and the covariance matrices) of two consecutive training
poses to obtain those of the untrained poses. Thus, the pro-

posed VC method synthesized more pose variabilities than
the NN method, since it has training classes with more com-
plete poses (training poses + interpolation poses).

Due to the fact that the appearance of a person’s
face is highly dependent on its pose, it is obvious that
an appearance-based method which can capture more pose
variabilities can give more accurate recognition. Moreover,
in the proposed VC method, the covariance matrices were
embedded in the appearance manifold. Therefore, the ad-
vantage of the proposed VC method includes the abilities
to capture pose variability and also learn the sample’s dis-
tribution of each pose. As the consequence, the proposed
VC method can give higher recognition accuracies than the
NN method. Table 4 shows that for both the linear PCA and
the RBF Kernel PCA feature extraction techniques, the pro-
posed VC method gave higher recognition accuracies than
that of the NN method. The results also show that the VC
method worked better for both the linear PCA and the non-
linear RBF Kernel PCA feature extraction techniques.

Furthermore, the structure of a manifold in the pro-
posed VC method is feature-space independent because a
manifold is constructed only by the interpolation of classes
of two consecutive training poses. As an interpolation tech-
nique can be applied to any feature-space, the structure of
the constructed manifold is also not affected by the linearity
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or non-linearity of the feature-space.

6. Conclusion

We have proposed the appearance manifold with view-
dependent covariance matrix for face recognition from
video sequences in two learning frameworks: the
supervised-learning and the incremental unsupervised-
learning. In the supervised-learning framework, the training
samples are labelled and an appearance manifold with view-
dependent covariance matrix is used to represent an iden-
tity category. Meanwhile, in the incremental unsupervised-
learning framework, the system first learns the initial cate-
gories through the initial manifolds, then the unlabelled in-
put sequences are incrementally learned in order to update
the existing identity categories of the system. The advan-
tages of this method are, first, the appearance manifold with
view-dependent covariance matrix model is robust to pose
changes and also noise invariant, since the embedded co-
variance matrices are calculated based on their poses in or-
der to learn the samples’ distributions along the manifold.
Moreover, the proposed incremental unsupervised-learning
framework is more realistic for a real-world face recogni-
tion application, since it allows us to train the system with
the available initial sequences, and later update the system’s
knowledge incrementally every time an unlabelled sequence
is input. We also integrated the appearance manifold with
view-dependent covariance matrix model with a pose esti-
mation system in order to improve the classification accu-
racy of the system and to easily detect the overlapped poses
in video sequences which is useful for the merging pro-
cess in the incremental unsupervised-learning framework.
The merging process is performed in order to merge the
manifolds which have some overlapped poses with strong
similarities. The experimental results showed that in both
frameworks, the proposed appearance manifold with view-
dependent covariance matrix method outperforms the sim-
ple manifold model in recognizing faces from video se-
quences.

Our future work will concentrate on recognizing faces
from continuous video sequences, with both vertical and
horizontal pose directions, sudden pose changes, and other
varying conditions.
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