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1. Introduction 

3D objects are visually complex and highly dependent on 
environmental conditions. Therefore, to visually learn the 
appearance of a 3D object, it is necessary to figure it in such way 
that can fully represent its characteristics. In general, capturing 
the characteristics of a 3D object can be done by using several 
combinations of 2D images or by constructing a high-cost 3D 
shape model. Here, we focus on an appearance-based approach 
that uses combinations of images to capture the appearance 
variability of a 3D object. One primary advantage of appearance-
based methods is that it is not necessary to create representations 
for objects since, for a given object, its model is now implicitly 
defined by the selection of the sample images of the objects [1].  

Appearance-based approach is usually combined with the 
concept of Principal Component Analysis (PCA). This concept 
enables a method to efficiently present a series of sample images 
in a low-dimensional feature description, called the eigenspace. 
For years, the eigenspace has provided an efficient and easy way 
to solve many recognition problems. Some of the earlier works 
in this domain include the application of PCA method in 
eigenpictures of Kirby and Sirovich [2] and eigenfaces of Turk 
and Pentland [3] for characterizing human face. Later, 
Moghaddam [4] proposed Probabilistic PCA method which 
formulates a maximum-likelihood framework for target detection. 
Further, Murase and Nayar [5] introduced Parametric Eigenspace 
method which uses a simple manifold to capture pose changes of 
an object in eigenspace. Addressing a different problem, 
Martinez [6] developed the Probabilistic Approach for 
recognizing partially occluded human faces.  

Just as the appearance of an object highly depends on the 
image conditions, the image’s position in eigenspace relies on 
the object’s appearance. For handling changes caused by pose 
and illumination variability, Murase and Nayar’s Parametric 
Eigenspace method could give more satisfactory results than the 
traditional eigenspace method. Unfortunately, naturally the 
presence of various types of noise could not be avoided. It might 
occur during the camera-captured process or as an error product 
of a segmentation process. In many cases, appearances of objects 
in images depend not only to pose changes and illumination, but 
also to geometric distortion and quality degradation effects.  
 
 
 
 
 

Figure 1. Image samples of 3D objects with                              
various geometric distortions (translation, rotation)                        

and quality degradations (blur) 
 

Fig. 1 shows some image samples of 3D objects with 
translation, rotation, and blur effects. In eigenspace, when these 
significant variations exist, the eigenpoint position is changed 
relatively far from the learning samples. Thus, relying the 
learning and recognition process on a simple appearance 
manifold such as in Parametric Eigenspace method tends to fail. 

To overcome this problem, we propose the construction of an 
appearance manifold with embedded covariance matrix. The 
basic idea is to eliminate the eigenpoint-to-eigenpoint 
correspondences of each learning pose class and then to 
construct the correspondences from the covariance matrices 
directly. We develop a manifold by embedding the covariance 
correlation information of eigenpoint distribution in every 
viewpoint.  

Here, we present various techniques to construct the 
appearance manifold with embedded covariance matrix. Each 
method uses a different type of construction process, although in 
general they use the same basic steps. We propose the 
appearance manifold with Constant Covariance matrix (CC) 
method which has a constant value of covariance matrix for 
every viewpoint, and propose the appearance manifold with 
learning-Point Interpolation (PI) and the appearance manifold 
with Covariance Interpolation (CI) which perform view-
dependent covariance matrix value for each pose position. By 
using these appearance manifold models, the robustness of the 
system will be increased, since it could analyze image condition 
such as pose changes, while the embedded view-dependent 
covariance matrix could define the distribution information of 
the eigenpoints in eigenspace. 
 

2. Eigenspace Representation 
Generally, appearance-based approaches deal with a set of 

learning images in various capturing conditions. These images 
are represented in a very high dimensional space, thus, they 
could not be applied directly due to efficiency reasons. Here, 
PCA is used to efficiently represent a collection of images by 
reducing their dimensionality.  

PCA represents a linear transformation that maps the original 
n-dimensional space onto a k-dimensional feature subspace 
where normally k<<n. The first k eigenvectors will be used to 
project S learning samples of P objects with H poses.  Thus, with 
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These eigenvectors ie  were obtained by solving the 
eigenstructure decomposition iii Qee =λ , where Q is the auto 
correlation matrix and iλ  the eigenvalue associated with the 
eigenvector ie . 
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(a) PE             (b) CC               (c) PI                  (d) CI 
Figure 2. Construction models of appearance manifold 

 

3. Appearance Manifold with Embedded Covariance 
Matrix in Eigenspace 

This section describes the process of constructing the 
appearance manifold with embedded covariance matrix in 
eigenspace and the recognition process of input images using the 
Mahalanobis distance measurement. 
 

3.1 Construction Process of Appearance Manifold with 
Embedded Covariance Matrix 

In this section, we present various techniques to construct the 
appearance manifold with embedded covariance matrix. Fig. 2 
shows the four types of construction models for the appearance 
manifold: the simple manifold used in the Parametric Eigenspace 
(PE) method, the appearance manifold with Constant Covariance 
matrix (CC) method, and the other two appearance manifold with 
view-dependent covariance matrix methods, called the 
appearance manifold with learning-Point Interpolation (PI) 
method and the appearance manifold with Covariance 
Interpolation (CI) method.  

Although each method uses a different type of construction 
technique for the appearance manifold, in general they use the 
same basic steps (see [7]). Fig. 3 shows the construction process 
of appearance manifold with embedded covariance matrix. Here, 
we only use the horizontal pose parameter ( hθ ) to construct the 
appearance manifold.  

After transforming learning images to the eigenspace, first, 
calculate the mean vector )()(

h
p θµ  and the covariance matrix 

)()(
h

p θΣ  for each object p  for horizontal viewpoint hθ . The 
mean vector is typically estimated using :  

(1) 

where S  is the number of learning samples from each class, and 
)()(

h
p

s θg  is the image sample s from class viewpoint hθ  and 
object p  in eigenspace. On the other hand, the covariance matrix 
is typically estimated by : 

.

(2) 

Then, create )(~ )( θpµ  as a continuous manifold of the mean 
vector and )()(~

θpΣ  for the covariance matrix. The processes of 
creating these manifolds might be different from one method to 
another.  

Parametric Eigenspace (PE) : The PE method uses a simple 
manifold obtained from the interpolation of the mean vector of 
the eigenpoints in two consecutive poses and applies the values 
of identity matrix for its covariance matrices. The construction 
model of the appearance manifold in the PE method is depicted 
in Fig. 2(a). 

Constant Covariance (CC) : Next, Fig. 2(b) shows the 
appearance manifold with Constant Covariance matrix (CC). 
After calculating the mean vectors and covariance matrix values 
for each learning pose in Eq. (1) and Eq. (2), apply an 
interpolation method for the mean vector of two consecutive 
learning poses to obtain the manifold of mean vector )(~ )( θpµ . 
On the other hand, the manifold of covariance matrix )()(~

θpΣ  
contains the same value for every viewpoint hθ  by applying the 
average covariance matrix : 

(3) 

with H number of viewpoint classes for each object. 
Learning-Point Interpolation (PI) : Fig. 2(c) shows the 

appearance manifold with learning-Point Interpolation (PI) 
method. It obtains the appearance manifold by interpolating 
every learning-eigenpoint in each pose class to other learning-
eigenpoints in the consecutive pose classes that has the same 
characteristics, such as same degradation effects. After creating 
those manifolds for each eigenpoint, generate the new 
eigenpoints for every in-between pose class, and then calculate 
their mean vectors and covariance matrices for every pose class. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Construction Process of Appearance Manifold with 

Embedded Covariance Matrix 
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Covariance Interpolation (CI) : Finally, Fig. 2(d) shows 
another type of appearance manifold, called the CI method. This 
method uses the appearance manifold embedded with view-
dependent covariance matrix that changes along with the 
function of viewpoints. The mean vector )(~ )( θpµ  could be 
obtained by applying an interpolation method between two 
consecutive mean vectors )()(

h
p θµ  and )( 1

)(
+h

p θµ . Then, the 
covariance matrix )()(~

θpΣ could be obtained by interpolating the 
covariance matrices )()(

h
p θΣ  and )( 1

)(
+Σ h

p θ , respectively.  
 

3.2  Recognition Process using Mahalanobis Distance 
Measurement 

In order to recognize an input image z , we calculate the 
Mahalanobis distance measurement defined in this formula:  

)()~()( )(~)()(~min)( )(1)()()( θθθθ
ppTppd µzµzz −−= −Σ       (3) 

The Mahalanobis metric provides a sufficient way to classify 
images based on their related characteristics and likelihood in 
each pose class. 
 

4. Application in 3D Object Recognition 
To evaluate the performance of our proposed methods, 

explained in Section 3, we developed an application in 3D object 
recognition. The developed system was used to recognize seven 
objects with various horizontal pose positions and influenced by 
geometric and quality-degradation effects, such as translation, 
rotation, and motion blur. Samples of 3D objects we used in 
experiments are shown in Fig. 4.  

In the learning stage, a total of 6,552 images were normalized 
into 32 x 32-pixels grayscale images. Each object consists of 36 
poses with 10-degree intervals of horizontal positions (0o, 10o, 
20o,…,350o), and each pose consists of an original camera-
captured image and 25 generated images. Those generated 
images were obtained by composing artificial noises, such as left 
and right translations (3, 6, 9, 12, 15 pixels), clockwise and 
counter-clockwise rotations (5o, 10o, 15o, 20o, 25o), and motion 
blur (5%, 10%, 15%, 20%, 25%).  
 
 

Figure 4. Samples of 3D objects used in the experiments 

Next, those images were projected into the eigenspace, and the 
appearance manifolds were created based on each construction 
method, as explained in section 3.1. We applied spline 
interpolation technique to obtain smooth manifold of mean 
vectors and linear interpolation for covariance matrices.  

Finally, we tested the system with input images that were 
different from the learning images (5o, 15o, 25o…355o) in 
horizontal poses and influenced by various types of degradation 
effects. For classification, we employed the Mahalanobis 
distance, as described in section 3.2. Figures 5, 6, and 7 show a 
series of the recognition accuracies of four methods in 
recognizing images influenced with translation effects, rotation 
effects, and motion blur effects, respectively. 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 5. Recognition accuracies of images with                                   
left (L) and right (R) translation effects 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 6. Recognition accuracies of images with                                   

clockwise (C) and counter-clockwise (CC) rotation effects 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Recognition accuracies of images with                          
motion blur effects 
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All figures indicate that the PI method and CI method, with 
their view-dependent covariance matrices, always achieved 
higher recognition accuracies than the PE method and CC 
method. For recognizing non-degraded images, the PI method 
achieved the highest recognition results with 94.05% recognition 
accuracy, while the CI method, CC method, and PE method 
achieved 93.65%, 79.37%, and 76.19%, respectively.  

When recognizing images with various geometric distortion 
and quality degradation effects, the PI method and CI method 
still achieved high recognition results. PI method and CI method 
could give satisfactory results in recognizing objects with up to 6 
pixels (20% of image size) translation from its center, up to 20o 
of rotation effects, while able to maintain their accuracies to 
recognize up to 25% blurred images. Meanwhile, CC method 
could only give satisfactory results in recognizing objects with 
up to 3 pixels (10% of image size) translation from its center, 10o 
of rotation effects, and 20% blurred images. 

The verification results are shown in Fig. 8 below, which 
shows the construction of covariance matrix along with its first 
and second eigenvectors directions. In this case, the covariance 
matrix constructions were obtained by slicing the appearance 
manifold of each method on an unlearned 45o viewpoint, where 
each appearance manifold was constructed from two extremely 
different learning viewpoints (0o and 90o). Fig. 8(a) shows the 
ground truth of a covariance matrix construction, obtained from 
real image projections, while Fig. 8(b), Fig. 8(c), and Fig. 8(d) 
show the construction results of covariance matrix from CC 
method, PI method, and CI method, respectively.  
 
 
 
 
 
 
 
 
        (a) Ground truth                   (b) Constant Covariance (CC) 
 

 
 
 
 
 
 
(c) Learn-Point Interpolation (PI)  (d) Covariance Interpolation (CI)  

 

Figure 8. Construction results of covariance matrix of an 
unlearned viewpoint along with its first and second eigenvectors 

directions, sliced from the appearance manifold 
 
 
 
 
 
 

Fig. 8(c) of PI method clearly presents the most similar 
construction results of covariance matrix with the results of real 
image projections which depicted in Fig. 8(a). This verifies that 
PI method has the highest recognition capability among the other 
methods. Following the PI method is the CI method with its 
construction results depicted in Fig. 8(d). Finally, Fig. 8(b) 
shows the construction result of covariance matrix of CC method 
with its less similar shape and direction which confirms its weak 
recognition capability compared with the PI method and the CI 
method with their view-dependent covariance matrix. 
 

5. Conclusion and Future Works 
We proposed the construction of appearance manifold with 

embedded covariance matrix and developed its application to 
recognize 3D objects from images that are influenced by 
geometric distortions and quality-degraded effects. As a result, 
our proposed appearance manifold with embedded covariance 
matrix could outperform the accuracy of the simple appearance 
manifold such as in PE method. Among these methods, our 
view-dependent covariance matrix methods (PI method and CI 
method) could provide more robust recognition capability 
compared with that of constant covariance matrix of CC method.  

Our future works include recognizing 3D objects from images 
that are influenced by other types of effects, as well as 
developing a recognition system that uses fewer learning samples 
by implementing a larger interval of viewpoint orientations. 
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