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PAPER

SDOF-Tracker: Fast and Accurate Multiple Human Tracking by
Skipped-Detection and Optical-Flow

Hitoshi NISHIMURA†a), Satoshi KOMORITA†b), Members, Yasutomo KAWANISHI†,††,†††c), Senior Member,
and Hiroshi MURASE†,†††d), Fellow

SUMMARY Multiple human tracking is a fundamental problem in un-
derstanding the context of a visual scene. Although both accuracy and
speed are required in real-world applications, recent tracking methods
based on deep learning focus on accuracy and require a substantial amount
of running time. We aim to improve tracking running speeds by performing
human detections at certain frame intervals because it accounts for most of
the running time. The question is how to maintain accuracy while skipping
human detection. In this paper, we propose a method that interpolates the
detection results by using an optical flow, which is based on the fact that
someone’s appearance does not change much between adjacent frames. To
maintain the tracking accuracy, we introduce robust interest point detection
within the human regions and a tracking termination metric defined by the
distribution of the interest points. On the MOT17 and MOT20 datasets in
the MOTChallenge, the proposed SDOF-Tracker achieved the best perfor-
mance in terms of total running time while maintaining the MOTA metric.
Our code is available at https://github.com/hitottiez/sdof-tracker.
key words: tracking, detection, optical flow

1. Introduction

Understanding the context of a scene in a video is one of the
biggest challenges in computer vision. Humans are often the
center of attention in a scene, and tracking them in a video
is the fundamental objective. Multiple human tracking is
the task defined as detecting the positions of multiple hu-
mans while maintaining their identities (IDs) over an image
sequence. In real-world applications such as surveillance,
tracking needs to be performed in real-time with high accu-
racy. In crowded scenes such as large stations, stadiums and
plazas, there is often a failure to detect humans accurately,
leading to ID switches. An ID switch is a serious problem
because it can lead to a misunderstanding of human behav-
ior. In addition to the need for accurate tracking, real-time
tracking is crucial for many real-world applications. For ex-
ample, the real-time recognition of suspicious behavior is
essential in surveillance.
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Fig. 1 Difference in the use of computational resources between the typ-
ical approach and our approach. Our approach can use computational re-
sources effectively and achieve an average running speed sufficient for real-
time tracking.

With the development of deep learning technology,
the accuracy of human detection has been significantly
improved (e.g., Faster R-CNN [1], Mask R-CNN [2] and
YOLOv4 [3]), and tracking-by-detection has become the
mainstream approach in recent years [4]–[16]. The ap-
proach implements human tracking by detecting humans
with a human detector and making associations with the
detection results using a similarity metric. The main ad-
vantage of this approach is that it is easy to determine
the start and end of a tracking event even with occlusions
and frame ins/outs. Most methods using this approach de-
tect humans by a deep learning-based detector and extract
the re-identification (re-ID) features from each region using
another deep learning model. However, human detection
and re-ID feature extraction take a considerable amount of
time; hence, an efficient computational resource is required
for real-time tracking, as shown in Fig. 1 (a). Some meth-
ods tackle this problem by conducting human detection and
re-ID feature extraction simultaneously with a single deep
learning model [17]–[22]. However, their methods have a
limitation that the speed can not be increased while keeping
accuracy.

We aim to improve the tracking running speed by by-
passing every-frame human detection, which is a computa-
tionally heavy task; that is, we perform the task at a certain
interval. Figure 1 (b) shows our approach. During the inter-
val, human detection is skipped and interpolated by faster
processing. We name this process Skipped-Detection. This
enables the effective use of computational resources and
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achieves an average running speed sufficient for real-time
tracking. The question to be addressed is how to interpolate
human detection in skipped frames. We focus on the fact
that someone’s appearance is generally stable between adja-
cent frames. In such a situation, primitive features are use-
ful to associate humans between adjacent frames at a pixel
level. Sparse optical flow [23] can estimate flow vectors at a
high speed by focusing on a small number of interest points.
In this paper, we use sparse optical flow to interpolate be-
tween skipped human detections, as shown in Fig. 1 (b). Ad-
ditionally, the optical flow can also estimate target locations
even in situations where the human detector misses some-
one.

Many tracking methods using optical flow have been
proposed [10]–[14], and they attempt to improve the track-
ing accuracy by human detection and optical flow at every
frame. In contrast, we aim to maintain the tracking accu-
racy only with optical flow with the support of skipped de-
tections. The problem is that the optical flow itself cannot
determine the start and termination of the tracking. In this
paper, we propose a novel human tracking method that in-
tegrates Skipped-Detection and Optical-Flow, and we name
it SDOF-Tracker. In the SDOF-Tracker, tracking by optical
flow is triggered by human detection and terminated based
on the variance of the interest points.

Moreover, the proposed SDOF-Tracker can prevent
false negatives even if the human detector misses someone.
To prevent false negatives, even if a human target is not de-
tected, tracking by optical flow is continued for a while. Ad-
ditionally, to set robust interest points for optical flow, they
are set inside a limited human region obtained by an instance
segmentation.

2. Related Work

In this section, we review the related work on multiple hu-
man tracking in terms of the tracking-by-detection approach
and the faster approaches.

2.1 Tracking-by-Detection Approach

A tracking-by-detection approach performs human track-
ing by detecting humans and associating the detection re-
sults using a similarity metric. DeepSORT [4] utilizes the
overlap between bounding boxes and the re-ID features ex-
tracted from the appearance and applies the Hungarian al-
gorithm [24] for data association. The Kalman filter is ap-
plied for robust tracking. MHT-MAF [5] utilizes human ac-
tion features for data associations. LTSiam [6] is based on
a Siamese network, which has tandem inputs and the same
weights in both branches. MPNTrack [7], LPC MOT [8],
and GNNMatch [9] are based on a graph neural network,
which captures the dependence of graphs via message pass-
ing. However, these methods require considerable time for
human detection and re-ID feature extractions for data asso-
ciations, so a substantial computational resource is required
for real-time tracking.

Many tracking methods based on optical flow have
been proposed to improve tracking accuracies. Evering-
ham et al. [10] proposed a method that utilizes the portion
of the inlier trajectories over the outliers that are between
the face detections to cluster them. Schikora et al. [11] pro-
posed a method that could deal with false positives and ID
switches by using finite set statistics. Fragkiadaki et al. [12]
proposed a method that jointly optimizes detectlet classifica-
tion and the clustering of optical flow trajectories. Choi [13]
proposed an aggregated local flow descriptor that could ac-
curately measure the affinity between a pair of detections.
Bullinger et al. [14] proposed a method that exploits in-
stance segmentation and predicts the positions and shapes
in the next frame by optical flows. However, these methods
require a considerable amount of running time because they
perform human detection in every frame and combine the
detection results with the optical flow.

2.2 Faster Approach

While the tracking-by-detection approach has a two-stage
structure for detection and data association, the latest ap-
proaches jointly perform them in a single neural network
for fast and accurate tracking. Tracktor [17] can detect the
position in the next frame based on the existing detector
without additional training. SimpleReID [19] learns a re-
identification model in an unsupervised manner. TBC [21]
explicitly accounts for the object counts inferred from den-
sity maps and simultaneously performs detection and track-
ing. TransCenter [22] is a transformer-based architecture
that handles long-term complex dependencies by using an
attention mechanism. Although most of these methods are
faster than the previous tracking-by-detection approach, the
speedup is limited because they perform human detection in
every frame.

Other approaches do not utilize appearance features for
data association. SORT [15] and IOU Tracker [16] utilize
only the overlap between the bounding boxes and are widely
used in real-world applications due to their speed. However,
these methods may fail in crowded scenes due to a lack of
appearance features.

Unlike human tracking, AdaVP [25] was proposed to
make human detection faster by optical flow in real-time de-
tection. Since the method does not care about consistent hu-
man IDs, the method cannot be directly applied to multiple
human tracking applications discussed in this paper.

3. Proposed Method

In contrast to conventional methods, the proposed SDOF-
Tracker does not perform human detection in every frame
and employs only optical flow to interpolate the detection
results. In this section, we first define symbols in the human
tracking. Second, we introduce the overall design of the
SDOF-Tracker, and then we explain each step.
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Fig. 2 Human tracking by the proposed SDOF-Tracker.

3.1 Symbol Definition

We define symbols in the human tracking. Let Bt =

(b1
t ,b

2
t , . . .) be the bounding boxes in frame ot at time t.

Here, bi
t denotes the i-th bounding box in frame ot. The

bounding box is represented in the image coordinate system
by b = (x, y, w, h), where x and y are the top-left x and y
coordinates of the bounding box, respectively, and w and h
are the width and height of the bounding box, respectively.
For the i-th bounding box bi

t in frame ot, let ai
t = (bi

t, z
i
t) be

the pair of the bounding box bi
t and its tracklet ID zi

t. Let
At = (a1

t , a
2
t , . . .) be the collection of all of these in frame ot.

Human tracking can be formulated as the problem of finding
{At | t ≥ 1} given a time series image {ot | t ≥ 1}.

3.2 Overall Design

We aim to improve the running speed of tracking by using
optical flow, which can estimate flow vectors at high speeds.
While high-speed tracking is performed using optical flow
in every frame, detections are just performed at a certain
frame interval. To improve the robustness, interest points
are set inside segmented regions. Moreover, tracking by op-
tical flow is continued after several frames even if the human
detector misses a human target. This continuation can pre-
vent false negatives, thus also preventing ID switches.

3.3 Details of Each Step

SDOF-Tracker has four steps: A. human detection, B. in-
terest point detection, C. human tracking by optical flow,
and D. data association. Figure 2 shows human tracking by
the SDOF-Tracker. It works in an online manner in that the
tracking result is immediately available with each incoming
frame. In the first frame, A. human detection and B. inter-
est point detection are executed. From the frame, C. human
tracking by optical flow is executed for L frames. After that
(frame 4 in the figure), A. human detection, D. data associ-
ation, and B. interest point detection (initialization) are exe-

cuted. The details of each step are described below.

A. Human Detection

This step estimates bounding boxes Dt = (d1
t ,d

2
t , . . .) using

the trained human detector, where d = (x, y, w, h). In this
work, we use a multitask network that not only detects hu-
mans but also performs instance segmentations to set robust
interest points. In the first frame, bounding box bi

t is deter-
mined to have the same value as di

t and ID zi
t is determined

to be unique for each i.

B. Interest Point Detection

This step sets interest points inside the bounding boxes for
optical flow calculations. In the first frame, the target bound-
ing boxes are Dt = (d1

t ,d
2
t , . . .). On the other hand, in frame

ot (t ≥ 2), the target bounding boxes are Bt = (b1
t ,b

2
t , . . .).

To improve the robustness of C. human tracking by optical
flow, we use the instance segmentation result to limit the
region of the interest points. The segmentation mask is rep-
resented as a binary image that indicates whether the human
region. The segmentation region is eroded using the mor-
phological operator [26] to avoid setting interest points in
the background regions. Each pixel is set to 1 if all the pixels
in the kernel region have a pixel value of 1; otherwise, they
are set to 0. The points of interest Pi

t = (pi1
t ,p

i2
t , . . . ,p

iQ
t ) are

randomly sampled inside the eroded segmentation region,
where Q is a predetermined parameter.

C. Human Tracking by Optical Flow

In this step, bounding boxes Ft = (f1
t , f

2
t , . . .) are esti-

mated from Bt−1 = (b1
t−1,b

2
t−1, . . .) by optical flow, where

f = (x, y, w, h). In the following, we explain how to pre-
dict the i-th bounding box fi

t from bi
t−1. First, the optical

flow Δi
t = (δi1t , δ

i2
t , . . . , δ

iQ
t ), which indicates where the in-

terest point set Pi
t−1 = (pi1

t−1,p
i2
t−1, . . . ,p

iQ
t−1) has moved, is

estimated. Second, the location of the bounding box (xi
t, y

i
t)
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is obtained by adding the median of the optical flow.

(xi
t, y

i
t) = (xi

t−1, y
i
t−1) + ˜Δi

t (1)

Third, the width and height of the bounding box, wi
t and hi

t,
are determined as the same value as time t − 1 because they
change very little between adjacent frames. Finally, when
t � 1 + nL, bi

t is determined to have the same value as fi
t

and tracklet ID zi
t inherits the same ID as time t − 1. Oth-

erwise, bi
t and zi

t are determined by data association using fi
t

as described in the next Sect. D.
However, tracking may fail when the points of inter-

est track other humans or objects. In such cases, inter-
est points often spread out rapidly. In this work, the ter-
mination of tracking is determined using the ratio of the
variance of the interest points between the adjacent frames.
The ratio is calculated by the variance of the interest point
Pi

t−1 = (pi1
t−1,p

i2
t−1, . . . ,p

iQ
t−1) in frame ot−1 and the interest

point Pi
t = (pi1

t−1 + δ
i1
t ,p

i2
t−1 + δ

i2
t , . . . ,p

iQ
t−1 + δ

iQ
t ) in frame ot

as follows:

αi
t =

var(Pi
t)

var(Pi
t−1)

(2)

Note that the interest points estimated by optical flow may
have noise, so we remove such interest points before calcu-
lating the variances. For removing noise, we use Hotelling
theory, which Hotelling theory is a fundamental method of
outlier determination that assumes that data is generated
with a normal distribution. Additionally, the tracking is ter-
minated when the number of interest points becomes less
than a predetermined threshold R.

D. Data Association

In this step, each bounding box fi
t ∈ Ft estimated by opti-

cal flow is associated with each detection d j
t ∈ Dt estimated

by the human detector in each L frame. The data association
has three important roles: the estimation of a tracklet ID, de-
termination of the start of tracking, and determination of the
termination of the tracking. The Hungarian algorithm [24]
is used for the association. The cost matrix for the Hungar-
ian algorithm is calculated using the intersection over union
(IoU) between the detections and bounding boxes. When
performing an association, if the cost is larger than a prede-
fined threshold ε, the bounding box is not associated with
the detection to prevent a false association.

For each matching pair, bounding box bi
t is determined

to have the same value as d j
t . Tracklet ID zi

t is determined
to have the same value as zi

t−1 corresponding to fi
t . For each

unmatched detection, tracking starts with a new tracklet ID.
For each unmatched bounding box, the tracking is termi-
nated. However, in crowded scenes, bounding boxes tend to
be unmatched due to false negatives. In this work, even if a
bounding box is unmatched within M frames, the tracking
is continued.

4. Experiments

To verify the effectiveness and efficiency of the proposed
SDOF-Tracker, we conducted human tracking experiments
using two major datasets, MOT17 and MOT20.

4.1 Experimental Conditions

Dataset: For the experiments, we used two major datasets,
MOT17 [27] and MOT20 [28]. They were captured with a
fixed or moving camera in a square, street and shopping
mall. MOT17 includes less dense crowds but more di-
verse scenarios than MOT20. For MOT17, the frame rate
is from 14 to 25fps, the resolution is from (640 × 480) to
(1, 920 × 1, 080), the time is from 15 to 85 seconds, and the
total number of objects is from 24 to 222. We used 21 se-
quences in the test set. On the other hand, for MOT20, the
frame rate is 25fps, the resolution is from (1, 173 × 880) to
(1, 920 × 1, 080), the time is from 17 to 133 seconds, and
the total number of objects is from 90 to 1, 121. We used 4
sequences in the training set. The training set was used for
evaluation (Sect. 4.2, 4.3, and 4.4) because the test set does
not have ground truth. Note that any model was not trained.
Evaluation Metric: The evaluation metrics include the
number of objects tracked for more than 80% of the flow
line (mostly tracked; MT), the number of objects tracked
for less than 20% (mostly lost; ML), recall (Rcll), preci-
sion (Prcn), ID switches (IDsw), fragmentation (Frag), and
multiple object tracking accuracy (MOTA) [29]. MOTA is a
widely used and comprehensive metric that combines three
error sources (false negative, ID switch and false positive).
We also measured the average speed per 1 frame. We used
an Intel Core i7-7700K 4.20 GHz CPU, 32 GB RAM, and
an NVIDIA GeForce Titan X Pascal GPU.
Implementation Details: As the baseline method, human
detection and re-ID feature extraction are performed in ev-
ery frame. We used Mask R-CNN [2] for the human de-
tector, and it was trained using MS COCO [30]. The same
human detection result was used for the baseline and the
proposed SDOF-Tracker. The threshold of human detection
was set to 0.2. The following are the parameters for SDOF-
Tracker, the values of which were set by preliminary exper-
iments. The frame interval for human detection was set to
L = 5. The frame length for tracking continuation was set to
M = 10. For the segmentation region eroding, a 2×2 kernel
was applied two times. For the optical flow calculation, the
Lucas-Kanade method [23] was used. The window size was
set to 15 × 15 and the height of image pyramid was set to 2.
The maximum and minimum numbers of interest points
were set to Q = 10 and R = 3, respectively. The param-
eter for human association was set to ε = 0.7.

4.2 Ablation Study

In this section, we verify the effectiveness of each of the
three factors in the SDOF-Tracker, the segmentation for
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Table 1 Ablation study. S: Segmentation, C: Continuation, T: Termination.

Pattern S C T MT ↑ ML ↓ Rcll [%] ↑ Prcn [%] ↑ IDsw ↓ Frag ↓ MOTA ↑
Baseline (DeepSORT [1]) - - - - 236 730 40.7 86.4 13, 731 18, 198 33.3

1 � 229 724 40.8 86.5 13, 622 17, 796 33.4
2 � 300 621 44.8 83.6 9, 709 15, 157 35.3
3 � 229 731 40.7 86.4 13, 967 18, 318 33.2

SDOF-Tracker 4 � � 303 619 44.9 83.8 9, 574 14, 756 35.5
5 � � 224 728 40.7 86.5 14, 013 18, 098 33.3
6 � � 299 616 44.8 83.7 9, 685 15, 084 35.4
7 � � � 303 615 44.9 83.9 9, 537 14, 770 35.5

Fig. 3 Change in tracking accuracy and speed with increasing frame interval (L) for human detection.

point extraction (S), tracking continuation (C) and the track-
ing termination using interest points (T). They are explained
in B. interest point detection, D. data association, and C. hu-
man tracking by the optical flow in Sect. 3.3, respectively.
We used the MOT20 dataset for the experiment.

Table 1 shows the performances with the three factors
combined. First, let us explain the segmentation for the
point extraction. As expected, the precision improved, and
as a result, MOTA improved. Second, let us explain the
tracking continuation. As expected, the recall significantly
improved. As a result, MT, ML, the number of ID switches,
the number of fragmentations and MOTA also improved.
Finally, let us explain the tracking termination using inter-
est points. Although the precision improved, the number of
ID switches and MOTA degraded. It is speculated that the
ratio of the variance of interest points is not appropriately
calculated because their points are not accurately set inside
the human region. The combinations of all of the processes
above achieved the highest performance for almost all met-
rics (MT, ML, Recall, IDsw, Frag and MOTA).

4.3 Analysis of Accuracy and Speed

We evaluated whether the running speed could be improved
while maintaining the tracking accuracy when the frame in-

terval (L) for human detection is increased. The speed in-
cludes the time required for human detection. For the base-
line method, human detection is performed in every frame,
and it is equivalent to DeepSORT [4]. On the other hand,
the SDOF-Tracker performs human detection in every L
frame. In the SDOF-Tracker, we evaluated how segmenta-
tion, tracking continuation, and tracking termination affect
the accuracy and speed. To compare the accuracy fairly, we
use the same detection result using Mask-RCNN, both with
and without SCT. Therefore, the segmentation time is in-
cluded when evaluating “without SCT”, but the actual speed
without segmentation is even faster. We used the MOT20
dataset for the experiment.

Figure 3 (a) shows the change in the tracking accuracy.
In “with SCT”, MOTA is almost the same when L = 1 as
when L = 5. Then, MOTA decreases when L ≥ 5 and is
almost the same when L = 15 as the baseline. By contrast, in
“without SCT”, MOTA decreases when L ≥ 1 and is almost
the same when L = 10 as the baseline. “with S” is not so
effective when L = 5, but is the most effective of S, C, and
T when L ≥ 10. This suggests that the importance of setting
good interest points is increasing as L increases.

On the other hand, Fig. 3 (b) shows the change in run-
ning speed. As L increases, the running speed increases in
both “with/without SCT”. The speed improvement rate ac-
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Fig. 4 Cropped example of the tracking result using the baseline and SDOF-Tracker. The brightness
and contrast of the images were increased for visibility.

cording to L is higher with SCT than without SCT. This
is because the frequency of termination is increased and
the number of tracked humans is decreased as L increases.
Thus, the SDOF-Tracker with SCT can improve the running
speed while maintaining the tracking accuracy.

4.4 Tracking Examples

Figure 4 shows a cropped example of the tracking result us-
ing the baseline and SDOF-Tracker in the MOT20 dataset.
This is a scene where three people are walking towards the
back. In the baseline, ID switches (IDsw) occur due to false
negatives (FN). In the SDOF-Tracker, human detection is
performed in frame 475 because we set L = 5. In the
SDOF-Tracker without SCT, false negatives are prevented
in frames 473 and 474 due to tracking by optical flow. How-
ever, the other false negatives remain. This is because the
optical flow cannot start when the false negative occurs in
frame 475, which is a chance for human detection. On the
other hand, in an SDOF-Tracker with SCT, all false nega-
tives and ID switches are prevented due to tracking continu-
ation in frame 475. Moreover, interest points are accurately
set on the regions with human bodies. Figure 5 shows an
example of the tracking result using the SDOF-Tracker with
SCT. Even though this is a very crowded scene, most hu-
mans are accurately tracked.

4.5 MOTChallenge Result

We compared the SDOF-Tracker to the state-of-the-art
methods in the MOTChallenge† on the MOT17 and MOT20
datasets. We compared the performance with methods that
have been published in the research literature. We use the
public detection results of the MOTChallenge to fairly com-
pare both accuracy and speed. Note that the SDOF-Tracker
did not use a GPU for human tracking. Since the public de-
tection results do not include segmentation results, regions
were not limited for setting interest points, i.e., it is equiva-
lent to pattern 6 in Table 1. The runtimes of detections are
not published on the MOTChallenge, so we cited the run-
times from the related literature [32], [33].
MOT17: The runtime of detection was assumed to be
60.0 ms [32]. Using this runtime, the average runtime of the
SDOF-Tracker was estimated as 25.1 ms when the frame
interval for human detection was set to L = 5. Table 2
shows the MOTChallenge result on the MOT17 dataset.
The SDOF-Tracker achieved the best performance in terms
of the total runtime. Nevertheless, MOTA was better than
GM PHD.
MOT20: The runtime of detection was assumed to be
131.6 ms [33]. Using this runtime, the average runtime of
the SDOF-Tracker was estimated as 68.0 ms when the frame
interval for human detection was set to L = 5. Table 3

†https://motchallenge.net
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Fig. 5 Example of tracking result using the SDOF-Tracker with SCT.

Table 2 MOTChallenge result on MOT17 dataset. The result is cited from the MOTChallenge web
page† (Our entry name on the web page is “FlowTracker”).

Rcll [%] ↑ Prcn [%] ↑ IDsw ↓ MOTA ↑ Avg. runtime [ms] ↓ Avg. runtime [ms] ↓
(Excluding detection) (Total)

SDOF-Tracker 52.3 82.9 5, 927 40.4 16.3 25.1
IOU Tracker [16] 50.1 93.4 5, 988 45.5 0.7 60.7
SORT [15] 49.0 90.7 4, 852 43.1 7.0 67.0
GM PHD 41.4 90.8 4, 607 36.4 26.0 86.0
GMPHD Rd17 54.3 88.9 3, 865 46.8 32.5 92.5
GMPHDOGM17 54.8 92.8 3, 125 49.9 32.6 92.6
CoCT pub 56.5 92.2 1, 657 51.4 33.8 93.8
PHD LMP 51.8 91.3 4, 977 45.9 34.0 94.0
BLSTM MTP O 57.2 91.6 2, 566 51.5 49.8 109.8
MOTDT17 55.6 92.9 2, 474 50.9 54.6 114.6
NOTA 55.2 93.9 2, 285 51.3 56.2 116.2

Table 3 MOTChallenge result on MOT20 dataset. The result is cited from the MOTChallenge web
page† (Our entry name on the web page is “FlowTracker”).

Rcll [%] ↑ Prcn [%] ↑ IDsw ↓ MOTA ↑ Avg. runtime [ms] ↓ Avg. runtime [ms] ↓
(Excluding detection) (Total)

SDOF-Tracker 58.0 84.6 3, 532 46.7 52.1 68.0
SORT [15] 48.8 90.2 4, 470 42.7 17.5 149.1
LTSiam [6] 58.5 84.0 4, 509 46.5 33.0 164.6
MPNTrack [7] 61.1 94.9 1, 210 57.6 153.8 285.4
TBC [21] 62.3 89.5 2, 449 54.5 178.6 310.2
SimpleReID [19] 55.3 97.8 2, 178 53.6 769.2 900.8
Tracktor [17] 54.3 97.6 1, 648 52.6 833.3 964.9
TransCenter [22] 71.4 88.3 4, 493 61.0 1, 000.0 1, 131.6
LPC MOT [8] 58.8 96.3 1, 562 56.3 1, 428.6 1, 560.2
mfi tst [31] 66.6 90.5 1, 919 59.3 2, 000.0 2, 131.6
GNNMatch [9] 56.8 96.9 2, 038 54.5 10, 000.0 10, 131.6
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shows the MOTChallenge result on the MOT20 dataset.
The SDOF-Tracker achieved the best performance in terms
of the total runtime. Nevertheless, MOTA was better than
SORT and LTSiam.
Discussion: SORT is widely used in real-world applica-
tions such as surveillance, and is capable of tracking with
practically acceptable accuracy despite its high speed. As
shown in MOTA and the average runtime (total) of Table 2
and 3, SDOF-Tracker is comparable to SORT in accuracy,
but much faster. Compared to SORT, the speed of SDOF-
Tracker is more than twice as fast on both MOT17 and
MOT20.

5. Conclusion

In this paper, we proposed the SDOF-Tracker, a fast and ac-
curate human tracking method using skipped detection and
optical flow. In the SDOF-Tracker, tracking by optical flow
is triggered by human detection and ends based on the vari-
ance of the interest points. To maintain accuracy, we intro-
duced robust interest point detection within human regions
and a tracking termination metric calculated by the distribu-
tion of the interest points. In our experiments, we confirmed
that the SDOF-Tracker can improve the running speed while
maintaining the tracking accuracy when the frame interval
for human detection is increased. Moreover, the SDOF-
Tracker achieved the best performance in terms of the to-
tal running time (68.0 ms) while maintaining MOTA (46.7)
on the MOT20 dataset in the MOTChallenge. In the future,
we will develop a method that can dynamically change the
frame interval for human detections.
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