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a b s t r a c t 

In this paper, we focus on the challenging task of the semantic segmentation of train front-view images. 

Managing trackside facilities can be done by using detailed and precise information about the surround- 

ing railway environment. Semantic segmentation enables us to understand the 2D environment, but there 

is no adequate large-scale dataset available for training a CNN for this purpose. Some attempts have been 

made to generate pseudo-data from unlabeled sequential frames to compensate for the lack of volume in 

training data, but the moving speed of trains makes it difficult to apply them directly. We aim to solve 

this problem by proposing the Soft Boundary Label Relaxation (Soft-BLR) method, which considers la- 

bel boundaries extending over multiple pixels to cope with more severely distorted pseudo-data and to 

better train the CNN in the initial training stage. Furthermore, we modify the loss function to penalize 

inference results based on the distance from the label boundary to solve the misalignment problems of 

border pixels. Through experimental evaluation, we report that the proposed method outperforms pre- 

vious methods on not only the semantic segmentation of challenging railway images, but also that of 

general street-view images. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Railways are valued means of transportation due to their speed, 

apacity, and reliability, and their extension reaches a total of 

ore than a million kilometers around the Globe. To cope with 

uch characteristics, railway operators especially emphasize on the 

afety and the prevention of accidents. From simple railway sig- 

als to more advanced Automatic Train Stop (ATS) systems, various 

echnologies are used to ensure the safety of passengers. However, 

he collection of geological / geometrical positions and the types 

f trackside facilities are currently done manually with high hu- 

an cost, and some railway operators are even unaware of where 

nd what trackside facilities exist along their tracks due to manag- 

ng problems within different departments. Daily maintenance of 

uch facilities is also essential, yet it is still being done by man- 

al and/or visual inspection. Therefore, a fully automatic technol- 

gy that can collect data about trackside facilities and can be used 

or their maintenance is in crucial need for railway operators. To 
∗ Corresponding author. 
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eet such needs, the use of semantic segmentation for railway en- 

ironment understanding is currently being considered. 

Semantic segmentation, a task of allocating a single semantic 

abel to each and every pixel within an image, can be used to 

nderstand the surrounding environment in detail. Almost every 

odern method of semantic segmentation utilizes Convolutional 

eural Network (CNN), and thus requires supervised data [3] . For 

his reason, building an adequate dataset for semantic segmenta- 

ion is a substantial issue. A typical pixel-level manual annota- 

ion of an image takes more than an hour [4] . Training a CNN 

odel generally requires a massive volume of training data, and 

onstructing a large-scale dataset for every application is unrealis- 

ic. Although domain adaptation has been studied to transfer train- 

ng results to similar domains, such as synthetic to real-world data 

10] , this approach cannot be applied across dissimilar domains 

ike from street environment to the railway environment. 

To cope with such lack of sufficient training data, Zhu et al. 

18] originally proposed joint image-label propagation to generate 

seudo-data using a small number of labeled images and neighbor- 

ng sequential unlabeled images for the street-view image domain. 

hey also introduced Boundary Label Relaxation (BLR) to cope with 

istorted training data generated by joint image-label propagation. 

n joint image-label propagation, pseudo-data are generated by 

https://doi.org/10.1016/j.patrec.2021.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.07.014&domain=pdf
mailto:furitsuy@murase.is.i.nagoya-u.ac.jp
https://doi.org/10.1016/j.patrec.2021.07.014
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Fig. 1. Boundary Label Relaxation (BLR) in 1D label space. The ground truth of the 

border pixels (shown in green) are modified to contain class labels that appear in 

both sides of the border. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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ransforming both an image and its label using densely calculated 

ptical flows between sequential frames. During this transforma- 

ion, multiple labels can propagate to a single pixel location, thus 

aking the class boundary ambiguous. BLR is introduced to take 

nto account such ambiguity during the training of a CNN. They 

ere able to augment the Cityscapes dataset [4] to eleven times 

ts original size and train a CNN effectively using this method, but 

he following problems remain: 

i) Large-scale augmentation is only possible when the dataset is 

taken at a high frame-rate and with small camera movement. 

With data taken from cameras mounted on trains, high oper- 

ation speed of trains makes it difficult to propagate the labels 

for generating pseudo-data. Distant pixels can be propagated to 

a single location, increasing the label ambiguity. However, the 

original method [18] only considers BLR for areas within dis- 

tance 1 of a label boundary. 

ii) BLR modifies the label space to allow multiple labels as ground 

truth in a single pixel location ( Fig. 1 ). This means that infer-

ences with wrong label alignment may be considered as being 

correct. 

To tackle these problems, based on the fact that label boundary 

istortions of more than a single pixel appear when propagating 

abels of railway images, we propose a “Soft-BLR” that considers a 

arger width at the label boundary. We introduce a novel loss func- 

ion of the CNN to penalize inference results based on the distance 

rom the relaxed label boundary to solve the misalignment prob- 

ems existent in the original BLR. This loss function also enables a 

moother training of the CNN, as close misclassifications will have 

ower loss values than those of distant misclassifications. These ef- 

orts contribute to accurate semantic segmentation of railway envi- 

onments, even in cases where the original annotations for training 

re barely available. We demonstrate the effectiveness of the pro- 

osed method through experimental analysis, and discuss future 

pplications and possible further improvements. 

. Related work 

.1. Semantic segmentation and datasets 

On general semantic segmentation, numerous studies have been 

ade in recent years. The use of a CNN became popular with the 

merge of the Fully Convolutional Network (FCN) [11] , and the 

rend has been followed by many state-of-the-art models like Seg- 

et [2] , PSPNet [17] , and DeepLabv3+ [3] . 

There are some datasets aiming at different domains for the 

urpose of training a CNN for semantic segmentation. However, 

xisting large-scale datasets mostly consist of either object-wise 

mages [6] , or street-view images [4] [12] , and cannot be directly 

sed for other domains like the railway environment. 

There are some datasets aiming exclusively at the semantic seg- 

entation of railways. For example, RailSem19 [16] is a dataset 

onsisting of 8500 unique images taken from train front-view cam- 

ras and their pixel-level annotations. Its annotation scheme is 

ocused on the detection of geometric objects like rails and the 

rackbed around them, but rail-side facilities like pole, beam, and 
259 
rossing gate are all labeled as a single class. This makes it insuf- 

cient for understanding the railway environment, as detailed la- 

eling of each rail-side facility is required in order to figure out its 

osition. 

.2. Data augmentation using label propagation 

Data augmentation is a common technique to scale up an in- 

ufficient volume of training data. There are some approaches to 

ropagate semantic labels of labelled frames across its sequential 

nlabeled frames. Patch matching methods [1] use an Expectation- 

aximization (EM) based algorithm utilizing image patch based 

imilarities or semantically consistent hierarchical regions, but 

ultiple hyperparameters like image patch size make them dif- 

cult to optimize. Meanwhile, flow based methods [8] make use 

f pre-calculated optical flow between raw sequential images, and 

pply it to warp the semantic labels of labelled frames. However, 

ighly accurate optical flow estimation is difficult even with the 

urrent state-of-the-art CNN based methods [14] . Recently, Zhu 

t al. [18] proposed joint image-label propagation, which uses mo- 

ion vectors learned from video prediction models to jointly warp 

oth the raw image and the semantic labels across their sequential 

rames. This method reduces the mis-alignment of semantic labels 

t warped frames, but require the training of the video prediction 

odel for maximum performance. 

. Soft-Boundary label relaxation with a novel loss function 

.1. Overview of the proposed method 

We build upon the idea that for a train front-view image se- 

uence augmented with joint image-label propagation, its class 

oundaries will be more distorted and misaligned than that of 

treet scenes. Using the original Boundary Label Relaxation (BLR) 

ould not be sufficient, as severe distortions cause multiple labels 

o propagate to a single pixel location and make the class bound- 

ry ambiguous. Even more, it does not take into account the order 

f the classes assigned to pixels around the boundary, resulting in 

isalignments in the inference results being considered correct. To 

olve this problem, we propose a novel method to handle misalign- 

ents at class boundaries caused by distortions more flexibly and 

ccurately. 

Fig. 2 shows the overall process flow of the proposed method. 

irst, we augment the training data using the joint image-label 

ropagation [18] . Then, we train a CNN using the proposed Soft- 

oundary Label Relaxation (Soft-BLR) and back-propagate the loss 

alculated using the novel loss function. 

.2. Soft-Boundary label relaxation (soft-BLR) 

BLR was originally designed to accept multiple classes at a class 

oundary pixel, ensuring robustness against accumulated propaga- 

ion artifacts. However, applying joint image-label propagation to 

rain front-view video sequences generates severe distortions such 

hat the conventional single-pixel width BLR cannot resolve. As a 

olution to this problem, we propose a new method called “Soft- 

LR” that considers a wider class boundary and uses a novel loss 

unction that can keep spatial class order alignment. 

To be specific, we first widen the width of the “boundary pixel”

o let the focused pixel’s class label contain all the labels of its 

eighboring pixels within an arbitrary distance N. By widening the 

idth of the class boundary, we can take into account distortions 

hat misplace borders by a larger margin. 

For the purpose of semantic segmentation, a one-hot vector (i.e. 

 vector where only a single element contains the value 1, while all 

thers contain the value 0) of the ground truth g (x ) is often used 
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Fig. 2. Overall process flow of the proposed method. 
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s the target variable for each pixel. Here, x is a pixel location vec- 

or pointing to the pixel location in an image. When we define the 

arget variable as t (x ) = g (x ) , the cross-entropy loss of the pixel 

ocation vector can be calculated with the following equation: 

 = −t (x ) 
T 

log ( f ( x ) ) , (1) 

here f (x ) is the predicted likelihood of the pixel location vector. 

ote that log (·) returns the logarithm for each element within a 

ector. 

Let N (x ) be a set of pixel location vectors that appear within 

istance D around the pixel location vector x : 

 (x ) = { y | d( x , y ) < D } , (2) 

here d( x , y ) is the distance between the two pixel location vec- 

ors. 

Using this, t (x ) can be modified as a multi-hot vector (i.e. a 

ector where some elements contain the value 1, while all others 

ontain the value 0): 

 (x ) = min 

(
1 , 

∑ 

˜ x ∈N (x ) 

g ( ̃  x ) 
)
, (3) 

here the operation min (·, ·) is applied coordinate-wise. 

When the distance limit D = 1 , it will be equivalent to the con-

entional BLR [18] . In the proposed method, to consider larger dis- 

ortions of a maximum of D pixels, we set D > 1 . 

However, the misalignment problem still remains. In fact, even 

hen the border width is equal to 1, i.e. in the case of [18] ’s

ethod, the inference results to be classified as being the same 

s that of the ground truth even when there are misalignments. 

uppose we are classifying pixels which lie along the boundary of 

lasses A and B . We define a and b as one-hot vectors of the cor-

esponding classes: 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

0 

0 

. . . 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, b = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 

1 

0 

. . . 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (4) 

To consider the order of the ground-truth labels and their dis- 

ance from the borders, the likelihood of the pixel at location vec- 

or x 2 being class A must be larger than that being class B , and

he difference between the two likelihoods of the classes must be 

arger when the pixel location vector is further away from the bor- 

er at x 1 . These conditions can be formulated as: 

 (A | x 2 ) > P (B | x 2 ) , (5) 
260 
 (A | x 1 ) − P (B | x 1 ) > P (A | x 2 ) − P (B | x 2 ) . (6) 

Let P (A | x 2 ) = t (x 2 ) 
T a . Here, the right-side of the equation de-

otes the likelihood of class A at pixel location x 2 . Eqs. (5) and (6)

an be restated using t (x ) as: 

 (x 2 ) 
T a > t (x 2 ) 

T b , (7) 

 (x 1 ) 
T a − t (x 1 ) 

T b > t (x 2 ) 
T a − t (x 2 ) 

T b . (8) 

Eq. (8) can be rewritten as: 

 (x 2 ) 
T b − t (x 1 ) 

T b > t (x 2 ) 
T a − t (x 1 ) 

T a . (9) 

In the example, the ground truth of x 2 and x 1 is of class A , so

oth terms t (x 2 ) 
T a and t (x 1 ) 

T a must have the same likelihood. 

herefore, we assume their difference in the likelihood to be 0. 

urthermore, we assume that the difference in the left-side of the 

quation to be a constant α to represent the likelihood of class B 

ecreasing linearly with the distance from the class border. With 

uch assumptions, the equation can be written as: 

 (x 2 ) 
T b − t (x 1 ) 

T b = α > 0 . (10) 

To generalize these conditions to 2D label space, we first define 

he following function to calculate the weight of a one-hot vector 

f an arbitrary class c at pixel location x : 

 (x , c ) = max 
y ∈N (x ) 

{ max (0 , 1 − αd( x , y )) g (y ) 
T 
c } . (11) 

Note that the second max (·, ·) in Eq. 11 ensures that all class 

ikelihoods remain a positive value. 

We use chessboard distance for the aforementioned distance 

(·, ·) to discretize the distance into integers. 

Finally, using c all , a set of all one-hot vectors corresponding to 

lasses that appear in the dataset, we decide the multi-hot-like 

alue t (x ) : 

 (x ) = 

∑ 

c ∈ c all 

h (x , c ) c . (12) 

An example of the representation of t (x ) for each method in 1D 

s shown in Fig. 3 . In conventional methods, CNNs are trained using 

ne-hot vectors of the ground-truth labels, and the values within 

he vector suddenly changes near label boundaries (between pixel 

ocation x 2 and x 3 ). In contrast, the target variable proposed by 

18] contains multi-hot values near label boundaries, and reduces 

he effect of misclassification near such locations. The target vari- 

ble proposed in this research further extends this approach as 
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Fig. 3. 1D example of the comparison between label spaces of the target variable 

t (x ) with its pixel location number. Conventional target variable contains one-hot 

class labels of the ground-truth, while the target variable defined by [18] contains 

multi-hot class labels. The target variable defined in the proposed method contains 

multi-hot-like values calculated using Eq. (12). 
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Table 1 

MIoU [%] of each method for the 

Cityscapes dataset. 

Method mIoU 

DL 75.15 

BLR-1 75.80 

Proposed (BLR-2) 76.02 

Proposed (BLR-3) 76.58 

Proposed (SBLR-1) 76.70 

Proposed (SBLR-2) 76.44 

Proposed (SBLR-3) 76.60 
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eighted multi-hot-like values, and acts as a soft constraint ac- 

epting ambiguity in class boundaries depending on its distance 

rom the border. 

The target variable t (x ) is used as a mask in Eq. (1) to calculate 

he cross-entropy loss, which can then be back-propagated to train 

n arbitrary CNN. 

. Experimental evaluation 

In this section, we evaluate the proposed Soft BLR method and 

ompare the results against existing methods. First, we evaluate on 

 widely-used public dataset for a general understanding of the ef- 

ects of the soft-boundary label relaxation. Then, we use private 

rain front-view datasets to test the specific effects of the proposed 

ethod on the railway environment. 

.1. Comparative methods and evaluation metrics 

We tested the following four methods: 

DL DeepLabv3+ trained without any BLR [3] . 

BLR-1 DeepLabv3+ trained with single-pixel width BLR with 

the border width being 1 pixel [18] . 

Proposed (BLR- N ) 

DeepLabv3+ trained with multiple-pixel width BLR without 

any modification to the loss function with the border width 

being N pixels (simple extension of [18] ). 

Proposed (SBLR- N ) DeepLabv3+ trained with soft multiple-pixel 

width BLR with a modification to the loss function with the 

border width being N pixels. 

For evaluation metrics, we calculate the pixel Intersection-over- 

nion for every class (class IoU), and average them to obtain mean 

ntersection-over-Union (mIoU). Each metric evaluates pixel level 

orrespondences between the ground truth and predicted labels, 

ith higher values being better. 

.2. Experiment 1: Cityscapes dataset 

.2.1. Datasets 

For a general evaluation of the proposed method, we used the 

ityscapes dataset [4] . This dataset includes pixel-level annota- 

ions of 50 0 0 street-view images, and is commonly used for the 

valuation of semantic segmentation frameworks. In this experi- 

ent, we use 2975 images included in the training set for training 
261 
ach method, and 500 images included in the validation set for 

uantitative analysis of the training results. We used the ImageNet 

5] and the Mapillary Vistas [12] datasets for pre-training the net- 

ork. 

.2.2. Implementation details 

Our CNN architecture for the experiment is based on 

eepLabv3+ [3] , with the backbone being ResNeXt50 [15] consider- 

ng its moderate computational complexity. The number of training 

pochs is set to 50, crop size to 896 × 896 pixels, hyperparameter 

to 0.2 and the other parameters the same as those of [18] . We

rain and evaluate the CNN of each method once. 

.2.3. Experimental results 

The results in Table 1 show that the proposed Soft-BLR proved 

ffective in a setting of semantic segmentation where the volume 

f training data is sufficient, as the mIoU improved by more than 

.5% from DeepLabv3+. 

.3. Experiment 2: Train front-view dataset 

.3.1. Datasets 

We build upon our previous research [7] and enlarge the train 

ront-view dataset, which now consists of a total of 116 images 

ith its annotations. It also contains more complex and diverse 

ases like an interaction with other trains and sections with mul- 

iple train tracks. 

We used image sequences taken by the Railway Technology Re- 

earch Institute (RTRI), Japan. The train operated at a maximum of 

5 km/h, and the images were taken at 60 frames per second. From 

he image sequences, we extracted 116 images so that they contain 

arious objects and backgrounds, and annotated them pixel-wise 

ver 22 pre-defined classes. Details on the class settings are given 

n [7] . 

For the training, we split the dataset into 66 images for training 

nd 50 images for testing. We use joint image-label propagation to 

ugment the training data with its sequential frames, and generate 

6 × 3 = 198 pseudo training data. Furthermore, in addition to this 

rain front-view dataset, we used ImageNet [5] , Mapillary Vistas 

12] , and Cityscapes [4] datasets for pre-training the network. 

.3.2. Implementation details 

We follow the method proposed by [18] for synthesizing train- 

ng data from sparsely annotated video frame sequences. Joint 

mage-label propagation is used to propagate both the video 

rames and their annotations, resulting in better alignment of 

lass borders. The propagation is performed by referring to the 

redictions made by the underlying SDCNet [13] and FlowNet2 

9] for optical flow calculation. For more details, the original pa- 

er [18] should be referred. 

After scaling up the dataset using joint image-label propagation, 

e train an arbitrary semantic segmentation CNN model using the 

oft-BLR. 
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Fig. 4. Several output examples of the three methods along with the ground truth for the train front-view dataset. 

Table 2 

MIoU [%] of each method for the 

train front-view dataset. 

Method mIoU 

DL 58.12 

BLR-1 58.73 

Proposed (BLR-2) 59.85 

Proposed (BLR-3) 59.59 

Proposed (SBLR-1) 59.13 

Proposed (SBLR-2) 59.85 

Proposed (SBLR-3) 60.35 
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Table 3 

MIoU [%] of each method for the ex- 

tended train front-view dataset. 

Method α mIoU 

DL 0.0 63.93 

BLR-1 0.0 65.68 

Proposed (BLR-2) 0.0 66.43 

Proposed (BLR-3) 0.0 65.79 

Proposed (SBLR-1) 0.1 65.98 

Proposed (SBLR-2) 0.1 66.26 

Proposed (SBLR-3) 0.1 66.42 

Proposed (SBLR-1) 0.2 67.23 

Proposed (SBLR-2) 0.2 66.32 

Proposed (SBLR-3) 0.2 66.22 

Proposed (SBLR-1) 0.3 66.01 

Proposed (SBLR-2) 0.3 66.63 

Proposed (SBLR-3) 0.3 65.73 

Proposed (SBLR-1) 0.4 66.26 

Proposed (SBLR-2) 0.4 66.75 
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Training settings are the same as those for the Cityscapes 

ataset in Experiment 1, except that the number of training epochs 

s set to 100. We train the CNN ten times per method, and report

he average mIoU. 

.3.3. Experimental results 

Fig. 4 shows an example of the outputs of the three methods 

ith enlarged views of detailed structures, and Table 2 shows the 

esulting mIoUs. Using multiple-pixel width for BLR proved effec- 

ive with mIoU improvement of more than 1.1% from BLR-1 to BLR- 

, and modifying the loss function further improved it by more 

han 0.5% from BLR-2 to SBLR-3 in a setting where the volume of 

raining data is insufficient. 

.4. Experiment 3: Extended train front-view dataset 

.4.1. Datasets 

We further test the class-wise segmentation ability of the pro- 

osed method to find the best value for the hyperparameter α
sing an extended version of the train front-view dataset. This 

ataset is built upon the dataset used in Experiment 2, and con- 

ists of 315 fully annotated images. 

For the training, we split the dataset into 265 images for train- 

ng and 50 images for testing. In addition to this train front- 

iew dataset, we used ImageNet [5] , Mapillary Vistas [12] , and 

ityscapes [4] datasets for pre-training the network. 

.4.2. Implementation details and evaluation metrics 

In this experiment, we do not augment the training data using 

oint image-label propagation. We also test different values for the 

yperparameter α. Note that for α = 0 . 4 , SBLR-3 yields the same

ikelihoods in Eq. (11) as SBLR-2, therefore is not included in the 

xperiment. Other implementation details are the same as those 

or Experiment 2. We train the CNN five times per method, and 
262 
eport the average mIoU for each α. We also report the class IoU 

or the best value of α. 

.4.3. Experimental results 

Table 3 shows the resulting mIoUs, and Table 4 shows the class 

oU for every class. Note that class IoUs for the class “traffic light”

re missing as it did not appear in the testing data. Using multiple- 

ixel width for BLR proved effective with mIoU improvement of 

ore than 0.7% from BLR-1 to BLR-2, and modifying the loss func- 

ion further improved it by 0.8% from BLR-2 to SBLR-1 ( α = 0 . 2 ) in

 setting where the volume of training data is sufficient. The best 

alue of the hyperparameter α was 0.2 for SBLR-1, 0.1 for SBLR- 

, and 0.4 for SBLR-2. Regarding the class IoU for α = 0 . 2 , SBLR-1

ave the best IoU in eight out of the twenty-two classes, while still 

howing comparative results in others. 

. Discussion and applications 

.1. Effectiveness of the proposed method 

From the results of Experiment 1 ( Section 4.2 ), the effectiveness 

f not only the modified loss function, but also widening the width 

f BLR on a general dataset was observed. We did not augment the 

raining data, so in theory there should not be any distortion in la- 

el boundaries. However, the ground-truth pixel-level annotations 

y human annotators are not always perfect. The true label bound- 

ry can be off by several pixels, and in such cases the widened BLR 

an help the CNN to not focus too much on such misplacements. 
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Table 4 

Class IoU [%] of each method for the extended train front-view dataset. Note that the hyperparameter α was set to 0.2. 

Method Flat Building Wall Fence Pole Traffic light Traffic sign Nature Sky Human Vehicle 

DL 52.53 87.92 73.92 70.63 81.17 — 0.70 89.58 97.83 73.32 63.31 

BLR-1 52.71 87.57 72.99 69.67 81.47 — 0.00 89.01 97.81 71.47 65.39 

Proposed (BLR-2) 51.46 87.94 74.58 71.06 80.95 — 31.04 89.45 97.86 72.69 65.51 

Proposed (BLR-3) 51.31 87.95 72.96 69.06 80.86 — 38.39 89.52 97.85 74.63 61.55 

Proposed (SBLR-1) 58.41 88.16 73.44 70.55 81.95 — 28.29 89.82 97.82 75.09 62.83 

Proposed (SBLR-2) 54.69 87.84 75.93 70.10 81.49 — 20.72 89.63 97.85 72.66 66.12 

Proposed (SBLR-3) 50.03 87.42 72.59 70.87 81.64 — 28.95 89.53 97.84 73.32 65.87 

Method Train 2-wheel Rail Track Crossing Facility C. gate O. facility Rw. light Rw. sign Plat. 

DL 81.53 49.90 93.68 85.80 77.38 81.76 69.09 54.78 44.01 67.35 56.43 

BLR-1 80.98 35.01 93.36 85.87 81.77 79.65 68.65 56.61 55.44 64.30 67.31 

Proposed (BLR-2) 87.99 43.57 93.80 86.23 79.68 81.93 70.08 58.10 45.28 66.28 58.56 

Proposed (BLR-3) 85.45 34.09 92.73 85.60 77.48 81.41 71.11 55.93 52.61 66.37 56.72 

Proposed (SBLR-1) 83.32 34.74 93.71 87.02 78.60 83.23 68.72 57.49 50.15 66.37 74.47 

Proposed (SBLR-2) 87.77 50.56 93.91 86.21 74.57 80.69 68.83 56.21 47.81 67.29 59.83 

Proposed (SBLR-3) 89.54 49.34 93.80 86.03 77.65 82.26 70.13 57.71 49.91 68.58 57.56 

Fig. 5. Example of distorted images and labels generated by propagation for the train front-view dataset. The image and the annotation in the t-th frame were propagated 

for three sequential frames. 
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From the results of Experiment 2 ( Section 4.3 ), we can clearly 

ee that the proposed method outperforms existing methods with 

 larger margin than the improvement of BLR-1 from the original 

eepLabv3+. Furthermore, the new loss function and the modified 

abel space seems also effective, and the best result showed im- 

rovement of more than 2% from the original DeepLabv3+. 

From the results of Experiment 3 ( Section 4.4 ), we can also see

 similar trend as those in previous experiments. 

Widening the pixel width of BLR seems effective with and with- 

ut the modifications to the loss function for training on aug- 

ented pseudo data. This may be due to the severe distortion gen- 

rated in them, as seen in Fig. 5 . Such distortions displace border 

ixels by chessboard distances of more than 1, which the conven- 

ional BLR with single-pixel width could not handle. Meanwhile, 

BLR-1 shows the best mIoU in Experiment 1 and Experiment 3, as 

hey do not involve pseudo data generation resulting in less distor- 

ions in the training data compared to Experiment 2. Overall, mod- 

fying the loss function with Soft-BLR proves to be effective for all 

ettings of the experiments. 

Also, we limited the number of propagation to ±1 frames dur- 

ng the training stage in Experiment 2. Propagating over more 

rames would generate images and labels that are clearly unreal- 

stic ( Fig. 5 , first and second columns), which implies the limita- 

ions of the underlying SDCNet [13] and FlowNet2 [9] in calculating 

he optical flow between distant frames and predicting the miss- 

ng parts. Pre-training them with train front-view images should 

nable further propagations, but even then, the fast moving speed 

f trains would limit the propagation length to a shorter period 

ompared to that of street scenes. 
263 
.2. Differences in the class IoU 

Here, we investigate the differences in the class IoUs of each 

ethod when training on the railway dataset. Table 2 shows the 

lass IoU for the 22 classes defined in the train front-view dataset. 

e can see that in most cases, one of the proposed methods show 

he highest class IoU. The margin of improvement varies for each 

lass, but it is generally larger for classes that contain thin and/or 

mall objects like “overhead facility” and “railway light”. 

For conventional semantic segmentation methods, classifying 

uch objects is especially challenging, since misclassifying them 

y a few pixels during training would have no difference to do- 

ng so by any margin. Even more, calculating optical flow and pre- 

icting their propagations are also difficult, leading to more dis- 

ortions within the augmented dataset. Multiple-pixel width BLR 

long with a new label space to disallow misalignments would en- 

ble the training stage of the CNN to gradually predict the class 

orders better, as closer misclassifications would have lower loss 

alues. Even in cases where the training data contain severely dis- 

orted class borders, there will be less effects on the training of the 

NN thanks to the Soft-BLR. 

Moreover, the class IoU of “traffic sign” vastly improves with 

he use of the proposed method. Objects belonging to this class 

arely appeared in the dataset, and conventional semantic segmen- 

ation methods seem to almost ignore it completely. Such behavior 

s thought to be the result of strict class boundaries and loss cal- 

ulations, penalizing even subtle misclassifications and discourag- 

ng the CNN to predict uncommon class labels. Using the proposed 

ethod relaxed such strict boundary borders and/or loss calcula- 
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ions, encouraging the CNN to learn a wider variety of classes and 

heir boundaries. 

. Conclusion 

In this paper, we focused on the challenging task of the seman- 

ic segmentation of train front-view images and proposed the Soft- 

oundary Label Relaxation (Soft-BLR) method as a solution. It ex- 

ends the width of the class boundary to multiple pixels to cope 

ith more severely distorted pseudo-data. Furthermore, we pro- 

osed a novel loss function to penalize inference results based on 

he distance from the label boundary to solve the misalignment 

roblem. 

Through experimental evaluation, we confirmed that the pro- 

osed method clearly outperforms previous researches on the se- 

antic segmentation of both a large-scale street-view dataset and 

mall-scale train front-view datasets. 

Future work includes improving the method of data augmenta- 

ion itself to enable the training of a better representation of the 

ailway environment, and applying semantic segmentation to real- 

orld railway maintenance tasks such as the inspection of building 

imits for safe train passing. 
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