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ABSTRACT

In this paper, we focus on the challenging task of the semantic segmentation of train front-view images.
Managing trackside facilities can be done by using detailed and precise information about the surround-
ing railway environment. Semantic segmentation enables us to understand the 2D environment, but there
is no adequate large-scale dataset available for training a CNN for this purpose. Some attempts have been
made to generate pseudo-data from unlabeled sequential frames to compensate for the lack of volume in
training data, but the moving speed of trains makes it difficult to apply them directly. We aim to solve
this problem by proposing the Soft Boundary Label Relaxation (Soft-BLR) method, which considers la-
bel boundaries extending over multiple pixels to cope with more severely distorted pseudo-data and to
better train the CNN in the initial training stage. Furthermore, we modify the loss function to penalize
inference results based on the distance from the label boundary to solve the misalignment problems of
border pixels. Through experimental evaluation, we report that the proposed method outperforms pre-
vious methods on not only the semantic segmentation of challenging railway images, but also that of
general street-view images.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Railways are valued means of transportation due to their speed,
capacity, and reliability, and their extension reaches a total of
more than a million kilometers around the Globe. To cope with
such characteristics, railway operators especially emphasize on the
safety and the prevention of accidents. From simple railway sig-
nals to more advanced Automatic Train Stop (ATS) systems, various
technologies are used to ensure the safety of passengers. However,
the collection of geological /| geometrical positions and the types
of trackside facilities are currently done manually with high hu-
man cost, and some railway operators are even unaware of where
and what trackside facilities exist along their tracks due to manag-
ing problems within different departments. Daily maintenance of
such facilities is also essential, yet it is still being done by man-
ual and/or visual inspection. Therefore, a fully automatic technol-
ogy that can collect data about trackside facilities and can be used
for their maintenance is in crucial need for railway operators. To
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meet such needs, the use of semantic segmentation for railway en-
vironment understanding is currently being considered.

Semantic segmentation, a task of allocating a single semantic
label to each and every pixel within an image, can be used to
understand the surrounding environment in detail. Almost every
modern method of semantic segmentation utilizes Convolutional
Neural Network (CNN), and thus requires supervised data [3]. For
this reason, building an adequate dataset for semantic segmenta-
tion is a substantial issue. A typical pixel-level manual annota-
tion of an image takes more than an hour [4]. Training a CNN
model generally requires a massive volume of training data, and
constructing a large-scale dataset for every application is unrealis-
tic. Although domain adaptation has been studied to transfer train-
ing results to similar domains, such as synthetic to real-world data
[10], this approach cannot be applied across dissimilar domains
like from street environment to the railway environment.

To cope with such lack of sufficient training data, Zhu et al.
[18] originally proposed joint image-label propagation to generate
pseudo-data using a small number of labeled images and neighbor-
ing sequential unlabeled images for the street-view image domain.
They also introduced Boundary Label Relaxation (BLR) to cope with
distorted training data generated by joint image-label propagation.
In joint image-label propagation, pseudo-data are generated by
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Fig. 1. Boundary Label Relaxation (BLR) in 1D label space. The ground truth of the
border pixels (shown in green) are modified to contain class labels that appear in
both sides of the border. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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transforming both an image and its label using densely calculated
optical flows between sequential frames. During this transforma-
tion, multiple labels can propagate to a single pixel location, thus
making the class boundary ambiguous. BLR is introduced to take
into account such ambiguity during the training of a CNN. They
were able to augment the Cityscapes dataset [4] to eleven times
its original size and train a CNN effectively using this method, but
the following problems remain:

(i) Large-scale augmentation is only possible when the dataset is
taken at a high frame-rate and with small camera movement.
With data taken from cameras mounted on trains, high oper-
ation speed of trains makes it difficult to propagate the labels
for generating pseudo-data. Distant pixels can be propagated to
a single location, increasing the label ambiguity. However, the
original method [18] only considers BLR for areas within dis-
tance 1 of a label boundary.

BLR modifies the label space to allow multiple labels as ground
truth in a single pixel location (Fig. 1). This means that infer-
ences with wrong label alignment may be considered as being
correct.

(ii)

To tackle these problems, based on the fact that label boundary
distortions of more than a single pixel appear when propagating
labels of railway images, we propose a “Soft-BLR” that considers a
larger width at the label boundary. We introduce a novel loss func-
tion of the CNN to penalize inference results based on the distance
from the relaxed label boundary to solve the misalignment prob-
lems existent in the original BLR. This loss function also enables a
smoother training of the CNN, as close misclassifications will have
lower loss values than those of distant misclassifications. These ef-
forts contribute to accurate semantic segmentation of railway envi-
ronments, even in cases where the original annotations for training
are barely available. We demonstrate the effectiveness of the pro-
posed method through experimental analysis, and discuss future
applications and possible further improvements.

2. Related work
2.1. Semantic segmentation and datasets

On general semantic segmentation, numerous studies have been
made in recent years. The use of a CNN became popular with the
emerge of the Fully Convolutional Network (FCN) [11], and the
trend has been followed by many state-of-the-art models like Seg-
Net [2], PSPNet [17], and DeepLabv3+ [3].

There are some datasets aiming at different domains for the
purpose of training a CNN for semantic segmentation. However,
existing large-scale datasets mostly consist of either object-wise
images [6], or street-view images [4] [12], and cannot be directly
used for other domains like the railway environment.

There are some datasets aiming exclusively at the semantic seg-
mentation of railways. For example, RailSem19 [16] is a dataset
consisting of 8500 unique images taken from train front-view cam-
eras and their pixel-level annotations. Its annotation scheme is
focused on the detection of geometric objects like rails and the
trackbed around them, but rail-side facilities like pole, beam, and
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crossing gate are all labeled as a single class. This makes it insuf-
ficient for understanding the railway environment, as detailed la-
beling of each rail-side facility is required in order to figure out its
position.

2.2. Data augmentation using label propagation

Data augmentation is a common technique to scale up an in-
sufficient volume of training data. There are some approaches to
propagate semantic labels of labelled frames across its sequential
unlabeled frames. Patch matching methods [1] use an Expectation-
Maximization (EM) based algorithm utilizing image patch based
similarities or semantically consistent hierarchical regions, but
multiple hyperparameters like image patch size make them dif-
ficult to optimize. Meanwhile, flow based methods [8] make use
of pre-calculated optical flow between raw sequential images, and
apply it to warp the semantic labels of labelled frames. However,
highly accurate optical flow estimation is difficult even with the
current state-of-the-art CNN based methods [14]. Recently, Zhu
et al. [18] proposed joint image-label propagation, which uses mo-
tion vectors learned from video prediction models to jointly warp
both the raw image and the semantic labels across their sequential
frames. This method reduces the mis-alignment of semantic labels
at warped frames, but require the training of the video prediction
model for maximum performance.

3. Soft-Boundary label relaxation with a novel loss function
3.1. Overview of the proposed method

We build upon the idea that for a train front-view image se-
quence augmented with joint image-label propagation, its class
boundaries will be more distorted and misaligned than that of
street scenes. Using the original Boundary Label Relaxation (BLR)
would not be sufficient, as severe distortions cause multiple labels
to propagate to a single pixel location and make the class bound-
ary ambiguous. Even more, it does not take into account the order
of the classes assigned to pixels around the boundary, resulting in
misalignments in the inference results being considered correct. To
solve this problem, we propose a novel method to handle misalign-
ments at class boundaries caused by distortions more flexibly and
accurately.

Fig. 2 shows the overall process flow of the proposed method.
First, we augment the training data using the joint image-label
propagation [18]. Then, we train a CNN using the proposed Soft-
Boundary Label Relaxation (Soft-BLR) and back-propagate the loss
calculated using the novel loss function.

3.2. Soft-Boundary label relaxation (soft-BLR)

BLR was originally designed to accept multiple classes at a class
boundary pixel, ensuring robustness against accumulated propaga-
tion artifacts. However, applying joint image-label propagation to
train front-view video sequences generates severe distortions such
that the conventional single-pixel width BLR cannot resolve. As a
solution to this problem, we propose a new method called “Soft-
BLR” that considers a wider class boundary and uses a novel loss
function that can keep spatial class order alignment.

To be specific, we first widen the width of the “boundary pixel”
to let the focused pixel’s class label contain all the labels of its
neighboring pixels within an arbitrary distance N. By widening the
width of the class boundary, we can take into account distortions
that misplace borders by a larger margin.

For the purpose of semantic segmentation, a one-hot vector (i.e.
a vector where only a single element contains the value 1, while all
others contain the value 0) of the ground truth g(x) is often used
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Fig. 2. Overall process flow of the proposed method.

as the target variable for each pixel. Here, x is a pixel location vec-
tor pointing to the pixel location in an image. When we define the
target variable as t(x) = g(x), the cross-entropy loss of the pixel
location vector can be calculated with the following equation:

L= —t(x)"log(f(x)), (1)

where f(x) is the predicted likelihood of the pixel location vector.
Note that log(-) returns the logarithm for each element within a
vector.

Let N (x) be a set of pixel location vectors that appear within
distance D around the pixel location vector x:

NX) ={yld(x,y) <D}, (2)

where d(x,y) is the distance between the two pixel location vec-
tors.

Using this, t(x) can be modified as a multi-hot vector (i.e. a
vector where some elements contain the value 1, while all others
contain the value 0):

t(x) = min (1, 3 g(i)),

XeN (x)

3)

where the operation min(., -) is applied coordinate-wise.

When the distance limit D = 1, it will be equivalent to the con-
ventional BLR [18]. In the proposed method, to consider larger dis-
tortions of a maximum of D pixels, we set D > 1.

However, the misalignment problem still remains. In fact, even
when the border width is equal to 1, i.e. in the case of [18]s
method, the inference results to be classified as being the same
as that of the ground truth even when there are misalignments.
Suppose we are classifying pixels which lie along the boundary of
classes A and B. We define a and b as one-hot vectors of the cor-
responding classes:

1 0
0 1

a=|0] b=10 (4)
0 0

To consider the order of the ground-truth labels and their dis-
tance from the borders, the likelihood of the pixel at location vec-
tor X, being class A must be larger than that being class B, and
the difference between the two likelihoods of the classes must be
larger when the pixel location vector is further away from the bor-
der at x;. These conditions can be formulated as:

P(A|x,) > P(B|X;), (5)
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P(Alx;) — P(B|X;) > P(A|X;) — P(B|X,). (6)

Let P(A|X,) = t(x,)Ta. Here, the right-side of the equation de-
notes the likelihood of class A at pixel location x,. Egs. (5) and (6)
can be restated using t(x) as:

t(x,)"a > t(x,)"b, (7)
t(x;)Ta—t(x;)™b > t(x,)"a — t(x,)"h.

Eq.
t(x,)™b — t(x,)"b > t(x,)"a — t(x;)"a.

(8)
(8) can be rewritten as:
9)

In the example, the ground truth of X, and Xx; is of class A, so
both terms t(x;)Ta and t(x;)Ta must have the same likelihood.
Therefore, we assume their difference in the likelihood to be 0.
Furthermore, we assume that the difference in the left-side of the
equation to be a constant « to represent the likelihood of class B
decreasing linearly with the distance from the class border. With
such assumptions, the equation can be written as:

t(x,)™ — t(x;)"b = & > 0. (10)

To generalize these conditions to 2D label space, we first define
the following function to calculate the weight of a one-hot vector
of an arbitrary class ¢ at pixel location x:

h(x, ¢) = max {max(0, 1 — ad(x, y))g(y) c}. (11)
yeN (x)

Note that the second max(-,-) in Eq. 11 ensures that all class
likelihoods remain a positive value.

We use chessboard distance for the aforementioned distance
d(-,-) to discretize the distance into integers.

Finally, using c,;, a set of all one-hot vectors corresponding to
classes that appear in the dataset, we decide the multi-hot-like
value t(x):

tx)= > hxoc

CeCy)

(12)

An example of the representation of t(x) for each method in 1D
is shown in Fig. 3. In conventional methods, CNNs are trained using
one-hot vectors of the ground-truth labels, and the values within
the vector suddenly changes near label boundaries (between pixel
location X, and x3). In contrast, the target variable proposed by
[18] contains multi-hot values near label boundaries, and reduces
the effect of misclassification near such locations. The target vari-
able proposed in this research further extends this approach as
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Fig. 3. 1D example of the comparison between label spaces of the target variable
t(x) with its pixel location number. Conventional target variable contains one-hot
class labels of the ground-truth, while the target variable defined by [18] contains
multi-hot class labels. The target variable defined in the proposed method contains
multi-hot-like values calculated using Eq. (12).

weighted multi-hot-like values, and acts as a soft constraint ac-
cepting ambiguity in class boundaries depending on its distance
from the border.

The target variable t(x) is used as a mask in Eq. (1) to calculate
the cross-entropy loss, which can then be back-propagated to train
an arbitrary CNN.

4. Experimental evaluation

In this section, we evaluate the proposed Soft BLR method and
compare the results against existing methods. First, we evaluate on
a widely-used public dataset for a general understanding of the ef-
fects of the soft-boundary label relaxation. Then, we use private
train front-view datasets to test the specific effects of the proposed
method on the railway environment.

4.1. Comparative methods and evaluation metrics

We tested the following four methods:

DL DeepLabv3+ trained without any BLR [3].

BLR-1 DeepLabv3+ trained with single-pixel width BLR with
the border width being 1 pixel [18].

Proposed (BLR-N)
DeepLabv3+ trained with multiple-pixel width BLR without
any modification to the loss function with the border width
being N pixels (simple extension of [18]).

Proposed (SBLR-N) DeepLabv3+ trained with soft multiple-pixel
width BLR with a modification to the loss function with the
border width being N pixels.

For evaluation metrics, we calculate the pixel Intersection-over-
Union for every class (class IoU), and average them to obtain mean
Intersection-over-Union (mloU). Each metric evaluates pixel level
correspondences between the ground truth and predicted labels,
with higher values being better.

4.2. Experiment 1: Cityscapes dataset

4.2.1. Datasets

For a general evaluation of the proposed method, we used the
Cityscapes dataset [4]. This dataset includes pixel-level annota-
tions of 5000 street-view images, and is commonly used for the
evaluation of semantic segmentation frameworks. In this experi-
ment, we use 2975 images included in the training set for training

261

Pattern Recognition Letters 150 (2021) 258-264

Table 1
MiIoU [%] of each method for the
Cityscapes dataset.

Method mloU
DL 75.15
BLR-1 75.80
Proposed (BLR-2) 76.02
Proposed (BLR-3) 76.58
Proposed (SBLR-1)  76.70
Proposed (SBLR-2) 76.44
Proposed (SBLR-3) 76.60

each method, and 500 images included in the validation set for
quantitative analysis of the training results. We used the ImageNet
[5] and the Mapillary Vistas [12] datasets for pre-training the net-
work.

4.2.2. Implementation details

Our CNN architecture for the experiment is based on
DeepLabv3+ [3], with the backbone being ResNeXt50 [15] consider-
ing its moderate computational complexity. The number of training
epochs is set to 50, crop size to 896 x 896 pixels, hyperparameter
o to 0.2 and the other parameters the same as those of [18]. We
train and evaluate the CNN of each method once.

4.2.3. Experimental results

The results in Table 1 show that the proposed Soft-BLR proved
effective in a setting of semantic segmentation where the volume
of training data is sufficient, as the mloU improved by more than
1.5% from DeepLabv3+.

4.3. Experiment 2: Train front-view dataset

4.3.1. Datasets

We build upon our previous research [7] and enlarge the train
front-view dataset, which now consists of a total of 116 images
with its annotations. It also contains more complex and diverse
cases like an interaction with other trains and sections with mul-
tiple train tracks.

We used image sequences taken by the Railway Technology Re-
search Institute (RTRI), Japan. The train operated at a maximum of
85 km/h, and the images were taken at 60 frames per second. From
the image sequences, we extracted 116 images so that they contain
various objects and backgrounds, and annotated them pixel-wise
over 22 pre-defined classes. Details on the class settings are given
in [7].

For the training, we split the dataset into 66 images for training
and 50 images for testing. We use joint image-label propagation to
augment the training data with its sequential frames, and generate
66 x 3 = 198 pseudo training data. Furthermore, in addition to this
train front-view dataset, we used ImageNet [5], Mapillary Vistas
[12], and Cityscapes [4] datasets for pre-training the network.

4.3.2. Implementation details

We follow the method proposed by [18] for synthesizing train-
ing data from sparsely annotated video frame sequences. Joint
image-label propagation is used to propagate both the video
frames and their annotations, resulting in better alignment of
class borders. The propagation is performed by referring to the
predictions made by the underlying SDCNet [13] and FlowNet2
[9] for optical flow calculation. For more details, the original pa-
per [18] should be referred.

After scaling up the dataset using joint image-label propagation,
we train an arbitrary semantic segmentation CNN model using the
Soft-BLR.
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(a) Ground Truth (b) DL

(¢c) BLR-1 (d) Proposed (SBLR-3)

Fig. 4. Several output examples of the three methods along with the ground truth for the train front-view dataset.

Table 2
MiIoU [%] of each method for the
train front-view dataset.

Method mloU
DL 58.12
BLR-1 58.73
Proposed (BLR-2) 59.85
Proposed (BLR-3) 59.59
Proposed (SBLR-1) 59.13
Proposed (SBLR-2)  59.85
Proposed (SBLR-3) 60.35

Training settings are the same as those for the Cityscapes
dataset in Experiment 1, except that the number of training epochs
is set to 100. We train the CNN ten times per method, and report
the average mloU.

4.3.3. Experimental results

Fig. 4 shows an example of the outputs of the three methods
with enlarged views of detailed structures, and Table 2 shows the
resulting mloUs. Using multiple-pixel width for BLR proved effec-
tive with mloU improvement of more than 1.1% from BLR-1 to BLR-
2, and modifying the loss function further improved it by more
than 0.5% from BLR-2 to SBLR-3 in a setting where the volume of
training data is insufficient.

4.4. Experiment 3: Extended train front-view dataset

4.4.1. Datasets

We further test the class-wise segmentation ability of the pro-
posed method to find the best value for the hyperparameter o
using an extended version of the train front-view dataset. This
dataset is built upon the dataset used in Experiment 2, and con-
sists of 315 fully annotated images.

For the training, we split the dataset into 265 images for train-
ing and 50 images for testing. In addition to this train front-
view dataset, we used ImageNet [5], Mapillary Vistas [12], and
Cityscapes [4] datasets for pre-training the network.

4.4.2. Implementation details and evaluation metrics

In this experiment, we do not augment the training data using
joint image-label propagation. We also test different values for the
hyperparameter «. Note that for o = 0.4, SBLR-3 yields the same
likelihoods in Eq. (11) as SBLR-2, therefore is not included in the
experiment. Other implementation details are the same as those
for Experiment 2. We train the CNN five times per method, and
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Table 3
MIoU [%] of each method for the ex-
tended train front-view dataset.

Method o mloU
DL 0.0 63.93
BLR-1 0.0 65.68
Proposed (BLR-2) 00 66.43
Proposed (BLR-3) 0.0 65.79
Proposed (SBLR-1) 0.1 65.98
Proposed (SBLR-2) 0.1  66.26
Proposed (SBLR-3) 0.1 66.42
Proposed (SBLR-1) 0.2 6723
Proposed (SBLR-2) 0.2  66.32
Proposed (SBLR-3) 0.2  66.22
Proposed (SBLR-1) 0.3 66.01
Proposed (SBLR-2) 0.3 66.63
Proposed (SBLR-3) 0.3  65.73
Proposed (SBLR-1) 0.4  66.26
Proposed (SBLR-2) 04 66.75

report the average mloU for each «. We also report the class IoU
for the best value of «.

4.4.3. Experimental results

Table 3 shows the resulting mloUs, and Table 4 shows the class
IoU for every class. Note that class IoUs for the class “traffic light”
are missing as it did not appear in the testing data. Using multiple-
pixel width for BLR proved effective with mloU improvement of
more than 0.7% from BLR-1 to BLR-2, and modifying the loss func-
tion further improved it by 0.8% from BLR-2 to SBLR-1 (o = 0.2) in
a setting where the volume of training data is sufficient. The best
value of the hyperparameter o was 0.2 for SBLR-1, 0.1 for SBLR-
3, and 0.4 for SBLR-2. Regarding the class IoU for o = 0.2, SBLR-1
gave the best IoU in eight out of the twenty-two classes, while still
showing comparative results in others.

5. Discussion and applications
5.1. Effectiveness of the proposed method

From the results of Experiment 1 (Section 4.2), the effectiveness
of not only the modified loss function, but also widening the width
of BLR on a general dataset was observed. We did not augment the
training data, so in theory there should not be any distortion in la-
bel boundaries. However, the ground-truth pixel-level annotations
by human annotators are not always perfect. The true label bound-
ary can be off by several pixels, and in such cases the widened BLR
can help the CNN to not focus too much on such misplacements.
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Table 4

Class IoU [%] of each method for the extended train front-view dataset. Note that the hyperparameter o was set to 0.2.
Method Flat Building ~ Wall Fence  Pole Traffic light  Traffic sign ~ Nature Sky Human Vehicle
DL 52.53  87.92 7392 7063  81.17 — 0.70 89.58 97.83 73.32 63.31
BLR-1 52.71 87.57 7299  69.67 81.47 - 0.00 89.01 97.81 71.47 65.39
Proposed (BLR-2) 5146  87.94 7458 71.06  80.95 - 31.04 89.45 97.86 72.69 65.51
Proposed (BLR-3) 5131 87.95 7296  69.06  80.86 — 38.39 89.52 97.85 74.63 61.55
Proposed (SBLR-1) 5841  88.16 73.44 7055 8195 - 28.29 89.82 97.82 75.09 62.83
Proposed (SBLR-2)  54.69  87.84 7593 70.10 81.49 - 20.72 89.63 97.85 72.66 66.12
Proposed (SBLR-3)  50.03  87.42 7259 70.87 81.64 - 28.95 89.53 97.84 73.32 65.87
Method Train 2-wheel Rail Track Crossing  Facility C. gate 0. facility ~ Rw. light  Rw. sign  Plat.
DL 81.53  49.90 93.68 8580 77.38 81.76 69.09 54.78 44.01 67.35 56.43
BLR-1 8098  35.01 9336 85.87 81.77 79.65 68.65 56.61 55.44 64.30 67.31
Proposed (BLR-2) 87.99 4357 93.80 86.23  79.68 81.93 70.08 58.10 45.28 66.28 58.56
Proposed (BLR-3) 8545  34.09 92.73 8560  77.48 81.41 71.11 55.93 52.61 66.37 56.72
Proposed (SBLR-1) 8332 3474 93.71 87.02 78.60 83.23 68.72 57.49 50.15 66.37 74.47
Proposed (SBLR-2)  87.77  50.56 9391 86.21 74.57 80.69 68.83 56.21 47.81 67.29 59.83
Proposed (SBLR-3)  89.54  49.34 93.80 86.03  77.65 82.26 70.13 57.71 49.91 68.58 57.56

t—3 t—2 r—1 t

Fig. 5. Example of distorted images and labels generated by propagation for the train front-view dataset. The image and the annotation in the t-th frame were propagated
for three sequential frames.

From the results of Experiment 2 (Section 4.3), we can clearly 5.2. Differences in the class IoU
see that the proposed method outperforms existing methods with

a larger margin than the improvement of BLR-1 from the original Here, we investigate the differences in the class IoUs of each
DeepLabv3+. Furthermore, the new loss function and the modified method when training on the railway dataset. Table 2 shows the
label space seems also effective, and the best result showed im- class IoU for the 22 classes defined in the train front-view dataset.
provement of more than 2% from the original DeepLabv3+. We can see that in most cases, one of the proposed methods show
From the results of Experiment 3 (Section 4.4), we can also see the highest class IoU. The margin of improvement varies for each
a similar trend as those in previous experiments. class, but it is generally larger for classes that contain thin and/or
Widening the pixel width of BLR seems effective with and with- small objects like “overhead facility” and “railway light”.
out the modifications to the loss function for training on aug- For conventional semantic segmentation methods, classifying
mented pseudo data. This may be due to the severe distortion gen- such objects is especially challenging, since misclassifying them
erated in them, as seen in Fig. 5. Such distortions displace border by a few pixels during training would have no difference to do-
pixels by chessboard distances of more than 1, which the conven- ing so by any margin. Even more, calculating optical flow and pre-
tional BLR with single-pixel width could not handle. Meanwshile, dicting their propagations are also difficult, leading to more dis-
SBLR-1 shows the best mloU in Experiment 1 and Experiment 3, as tortions within the augmented dataset. Multiple-pixel width BLR
they do not involve pseudo data generation resulting in less distor- along with a new label space to disallow misalignments would en-
tions in the training data compared to Experiment 2. Overall, mod- able the training stage of the CNN to gradually predict the class
ifying the loss function with Soft-BLR proves to be effective for all borders better, as closer misclassifications would have lower loss
settings of the experiments. values. Even in cases where the training data contain severely dis-
Also, we limited the number of propagation to +1 frames dur- torted class borders, there will be less effects on the training of the
ing the training stage in Experiment 2. Propagating over more CNN thanks to the Soft-BLR.
frames would generate images and labels that are clearly unreal- Moreover, the class IoU of “traffic sign” vastly improves with
istic (Fig. 5, first and second columns), which implies the limita- the use of the proposed method. Objects belonging to this class
tions of the underlying SDCNet [13] and FlowNet2 [9] in calculating rarely appeared in the dataset, and conventional semantic segmen-
the optical flow between distant frames and predicting the miss- tation methods seem to almost ignore it completely. Such behavior
ing parts. Pre-training them with train front-view images should is thought to be the result of strict class boundaries and loss cal-

enable further propagations, but even then, the fast moving speed culations, penalizing even subtle misclassifications and discourag-
of trains would limit the propagation length to a shorter period ing the CNN to predict uncommon class labels. Using the proposed
compared to that of street scenes. method relaxed such strict boundary borders and/or loss calcula-
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tions, encouraging the CNN to learn a wider variety of classes and
their boundaries.

6. Conclusion

In this paper, we focused on the challenging task of the seman-
tic segmentation of train front-view images and proposed the Soft-
Boundary Label Relaxation (Soft-BLR) method as a solution. It ex-
tends the width of the class boundary to multiple pixels to cope
with more severely distorted pseudo-data. Furthermore, we pro-
posed a novel loss function to penalize inference results based on
the distance from the label boundary to solve the misalignment
problem.

Through experimental evaluation, we confirmed that the pro-
posed method clearly outperforms previous researches on the se-
mantic segmentation of both a large-scale street-view dataset and
small-scale train front-view datasets.

Future work includes improving the method of data augmenta-
tion itself to enable the training of a better representation of the
railway environment, and applying semantic segmentation to real-
world railway maintenance tasks such as the inspection of building
limits for safe train passing.
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