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Abstract

In this paper we propose and investigate the possibilities inherent in a new, unsupervised

approach to multi-view face recognition, which can be formulated mathematically as a prob-

lem of partitioning of proximity data, obtained from multi-view face image sequences. The

proposed approach is implemented in two novel pairwise clustering algorithms, CAR1 and

CAR2, which partition the input data into identity clusters by performing combinatorial op-

timization guided by two types of interaction forces, attraction and repulsion, imposed on the

original proximity matrices. Several experiments were conducted in order to test the perfor-

mance of the proposed algorithms on real-world datasets including both frontal and side-view

faces, which have been gathered over a period of several months. The obtained results can be

considered encouraging for the general approach proposed here, and the new algorithms com-

pared favorably to two other pairwise clustering algorithms, recently proposed in the image

segmentation literature.
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1. Introduction

Being an area of both theoretical and practical interest, face recognition has

attracted a lot of attention and research effort. However, in spite of the extensive

research conducted in this area during the last several decades (see [1–4] for surveys),
face recognition still remains a domain in which humans significantly outperform

computers, especially in unconstrained, dynamically changing and unpredictable en-

vironments, for which still there are many unresolved problems. As new approaches

for dealing with these problems are constantly being sought, here we will try to inves-

tigate one promising direction for research, which seems to have not received enough

attention from the face recognition community. We consider the possibility that the

ability of biological systems to interact directly with the sensory input from their en-

vironment and learn by self-organizing it into meaningful categories (unsupervised
learning) could be a hint to one such promising direction. Perceptual self-organiza-

tion, the ability to discover structural organization in the sensory data in unsuper-

vised way, then should be important also in the design of artificial face recognition

systems, which have to function efficiently and reliably in the ever-changing and un-

predictable conditions of the real-world environments. Probably some of the reasons

why the unsupervised approach has not received the attention it deserves can be at-

tributed to the fact that it has been considered a ‘‘too difficult’’ problem, which is also

computationally expensive. However, the recent increase in computational power and
the development of better algorithms (one example being the recent development and

successful application of more sophisticated graph-theoretic concepts), might cause a

reevaluation of the role of unsupervised methods, leading to their broader application

in many areas, like face recognition, in which traditionally the supervised methods

have defined the dominating approach (see [5,6] for some previous attempts to use

unsupervised methods).

Unsupervised face recognition can be considered important not only from theo-

retical point of view, but also because of the numerous potential practical applica-
tions which it can find like, for example, for online identification in video

surveillance systems and man–machine interfaces, for content-based image re-

trieval/annotation in multimedia applications, among many others, when supervised

strategies might be either impossible (category information is simply not available

and category patterns have to be discovered, or ‘‘self-organized’’ from the input data

stream) or impractical (when the manual segmentation/labeling of huge datasets into

category groups can be overwhelming and costly).

Another difficult problem in face recognition, which already has started to attract
more attention, is the problem of multi-view (or view-independent) face recogni-

tion—recognizing faces across different views. Achieving multi-view recognition in

practical applications is difficult, because different people�s faces observed in the

same conditions (illumination, view angle, size and so on) look more similar to each

other than the same person�s face observed in different conditions—in frontal

and side-view, under extreme illumination conditions, occluded, and so on. Different

approaches have been proposed to solve this problem. While initially most of the re-

search work was concentrated predominantly on static face images like for example,
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the modular eigenspaces of [7], elastic graph matching [8], or learning the correspon-

dence transformations between views [9,10], just to mention a few representative ap-

proaches, more recently, the fact that the information contained in dynamic video

sequences with continuously changing face views can be used advantageously, has

started to attract more research effort [11–14].
Here we further expand the dynamic approach by considering an unsupervised al-

ternative to the predominantly supervised algorithms for multi-view face recognition

from video sequences (see also [15] for some other work on clustering sequences of

tracked human figures). In the framework we propose, unsupervised multi-view face

recognition is formulated mathematically as a problem of clustering of proximity

data, obtained from multi-view face image sequences. The proposed approach is im-

plemented in two novel pairwise clustering algorithms, CAR1 and CAR2, which par-

tition the input data into identity clusters by performing combinatorial optimization
guided by two types of interaction forces, attraction and repulsion, imposed on the

original proximity matrices. A detailed explanation of the motivation for proposing

this approach is given in Section 1.1.

1.1. Motivation for the proposed general approach

The purpose of the learning algorithms introduced in this paper is to group a set

of unlabelled face image sequences into their corresponding identity categories in un-
supervised manner, without using any category information provided in advance.

Although, as we already mentioned above, such formulation of the general problem

of face recognition has not attracted much attention in the face recognition commu-

nity, the basic underlying problem of ‘‘discovering structure hidden in unlabelled da-

tasets’’ is considered important in research areas like image segmentation, perceptual

grouping, content-based image retrieval, data mining and many others. In these ar-

eas, significant efforts have been aimed at developing algorithms for segmentation,

grouping, self-organization, automatic inference (and so on, names varying among
areas), which can be considered as instances of clustering, to use the standard pattern

recognition term. Good overviews of clustering can be found in [16–18] and more

details in [19,20]). A similar approach can be pursued also in face recognition, and

we will try to show in this paper that certain clustering algorithms (especially pair-

wise clustering, defined below) can be successfully applied in unsupervised face rec-

ognition. We will also compare the clustering algorithms we propose here to some

other algorithms which have been developed and successfully applied to similar

problems in other areas, like image segmentation for example. It should be noted
that although the algorithms proposed here have been used in this work specifically

for face recognition, there is nothing domain-specific about them. Their application

to other similar problems is straightforward.

Clusteringmethods try to partition the available data into clusters according to the

‘‘natural’’ categories present in the data, in the absence of explicit category informa-

tion. Usually ‘‘natural’’ is assumed to mean that the patterns within the same cluster

are more similar to each other than to patterns in different clusters. When a priori

knowledge of the distribution of the observed data is not available, finding the proper
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balance between the two conflicting requirements—not to superimpose structure

which does not exist in the data, and at the same time not to overlook existing struc-

ture, constitutes the major difficulty. Clustering methods can be further subdivided

into central and pairwise clustering. In central clustering (for example see [21–24])

usually the data patterns can be represented as samples in a D-dimensional metric
space, and it is assumed that each cluster can be parameterized by a center (also called

centroid or prototype) around which the samples are spread according to some (usu-

ally assumed Gaussian) distribution. These assumptions are used to form a global cri-

terion whose minimization determines the final partitioning. There are many practical

cases, however, in which the representation of the input data with explicit coordinates

in metric space is either not possible, or inconvenient to handle in such form, and in-

stead the data are specified by their pairwise relations only, in the form of proximity

(similarity or dissimilarity) values ordered in a proximity matrix. This is equivalent to
representing each sample as a node in a graph in which the edges correspond to the

proximity values. The task of pairwise clustering (see for example [25]) then is to par-

tition the data based solely on the available pairwise relations, which can be formu-

lated mathematically as a combinatorial optimization problem [26].

In our case, there are several peculiarities characterizing the data with which we

deal, which motivate us to use pairwise rather than central clustering. As people move

in unconstrained dynamic scenes, exposing different views of their faces to the camera

(things being further complicated by factors like variation in scale and illumination,
changes in facial expressions, and so on), the resultant face sequences for the different

identity categories form complex non-linear manifolds in face image space. Although

it is possible to treat each face as a separate sample represented by its coordinates in a

certain metric face-space, centroids may be meaningless or difficult to define and han-

dle there. Also, clustering which operates directly on individual face samples might be

problematic, because for individual face samples, generally the within-class distance

will be greater than the between-class distance, as illustrated in Fig. 1. If clustering

were attempted with them, instead of grouping together different views of the same
person�s face (that is, grouping along the within-class, or view-variation axis in

Fig. 1), most likely clusters of similar views of different people along the inter-class

variation axis would be detected. Also, usually the number of the clusters (or identity

categories) is not known in advance, while central clustering methods need it to be

known a priori for the definition of their criterion functions, and the partitions they

find are sensitive to this parameter. Finally, in the available datasets (especially if they

are obtained under real-world surveillance conditions) the different categories might

not be represented uniformly, some may be under-represented and some over-repre-
sented, and the same thing would be true for the face-views representation. Usually

not all possible (or sufficiently many) views will be available, and typically the range

of view change will vary widely among sequences. All these factors might render un-

justifiable the modeling assumptions necessary for the central clustering approach,

while pairwise clustering, being essentially a non-parametric, or model-free approach,

needs fewer assumptions, thus being able to handle a larger variety of problems.

The rest of the paper is organized as follows. Section 2 briefly considers the

problem of defining suitable measures of distance (or dissimilarity), both between



Fig. 1. For clusters of multi-view face sequences, generally the intra-class distance is greater than the inter-

class distance.
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face images and between face sequences, which will be needed to obtain the input

pairwise proximity relations. Preference is being given to distance measures which

are not computationally over-demanding, in view of the large volume of data
which has to be processed when image sequences, rather than still images are used.

Several algorithms, which seem to be able to implement the proposed general ap-

proach, will be described in Section 3. First, some definitions, which will be needed

for the description of the clustering algorithms, will be given in Section 3.1. The

proposed new algorithms CAR1 and CAR2 will be introduced in Sections 3.2

and 3.3, while two other recently proposed pairwise clustering algorithms (which

also will be tried on our data for comparison) will be briefly reviewed in Sections

3.4 and 3.5. Experimental results will be reported in Section 4 and Section 5 will
conclude the paper.
2. Distance measures between face images and between face sequences

As we mentioned above, we will assume that the input data we deal with are given

in the form of a proximity matrix PN�N ¼ fpijg, in which pij is the distance between
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the ith and jth face sequences SðiÞ and SðjÞ, and i; j : 1; . . . ;N . Details describing the

preprocessing which extracts face-only image sequences from the input video stream

will be given in Section 4, while here we will first consider how to define a suitable

distance measure between two such face-only image sequences. Actually, it is neces-

sary to define two distance measures: (a) distance (i.e., a measure of dissimilarity) be-
tween two face images; and (b) distance between two face image sequences. Different

ways to do this are conceivable, but for simplicity and out of computational consid-

erations, we will limit ourselves here (and in the experiments described in Section 4)

only to two different instances of distance measures for (b) and one for (a). First, for

the distances between two face images, represented as M-dimensional vectors a and

b, we will use the L2 norm
L2ða� bÞ �
XM
i

jai

 
� bij2

!1=2

; ð1Þ
which calculates the Euclidean distance between two face patterns. Although we

conducted experiments using also L1 (the city-block metric) and the L�
0 norm (pro-

posed in [27] as a better choice for face images than (1) above), defined as the number

of pixel locations in a and b that differ in value more than a certain pre-defined

constant d:
L�
0ða� bÞ �

X
jai�bi j>d

jai � bij0; ð2Þ
we did not observe any important differences due to the particular metric used.
For the distance between two face sequences SðiÞ and SðjÞ we will define two mea-

sures: (a) the minimal distance dmin and (b) the modified Hausdorff distance dh. The
minimal distance is defined as
dminðSðiÞ; SðjÞÞ ¼ min
a2SðiÞ; b2SðjÞ

ka� bk; ð3Þ
where k � k is the L2 norm, i.e., dmin gives the distance between the nearest two faces

among SðiÞ and SðjÞ. The (directed) Hausdorff distance between two finite point sets A
and B is defined as
HðA;BÞ ¼ maxðhðA;BÞ; hðB;AÞÞ;

where
hðA;BÞ ¼ max
a2A

min
b2B

ka� bk;
but as has been found for other image processing applications [28,29], a slightly

modified version called a modified Hausdorff distance seems to be more suitable for

practical tasks (for example, in our case a single face image a in SðiÞ that is far from

any other face image in SðjÞ would cause HðSðiÞ; SðjÞÞ to become very large), which we

re-define here for the case of image sequences as
dhðSðiÞ; SðjÞÞ ¼
ðf th

a2SðiÞ minb2SðjÞ ka� bkÞ þ ðf th
b2SðjÞ mina2SðiÞ a� bk kÞ

2
; ð4Þ
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where fx2SðxÞgðxÞ denotes the f th quantile value of gðxÞ over the set of face images in

SðxÞ, for some value of f between zero and one (e.g., f ¼ 0:5 would give the median

Hausdorff distance).

More elaborate between-face and between-sequence distance measures than those

defined above might be used, if processing time is not a problem. Naturally, better dis-
tance measures will lead to better clustering results, but unfortunately more sophisti-

cated measures tend to be very time consuming (especially when image sequences of

hundreds of faces are involved, as in our case), so we have decided to limit our efforts

here to showing that the proposed algorithm can work quite well even with sub-

optimal distance measures (as those defined above), which obviously would generate

some unreliable measures due to their limitations (see also [30] for an alternative way

to organize the relations between face sequences by using a VQ-like approach).
3. Methods

3.1. Preliminaries

After the distance metrics are chosen and the proximity (dissimilarity) matrix P is

calculated, the available data can be partitioned into clusters by pairwise clustering.

Usually first P is modified into an affinity (or similarity) matrix AN�N ¼ faijg defined
as
aij ¼ exp � p2ij
2r2

� �
if exp � p2ij

2r2

� �
> r;

0 otherwise;

(
ð5Þ
where r is a free parameter reflecting some reasonable local scale and values less than

a certain small constant r are set to zero. In our case, if the face sequences are

thought of as nodes in a graph, interacting with each other, the ith row in A will

describe the strength of interaction (or affinity) between the ith node (sequence) and

all other nodes (sequences), which will always be positive or zero.

However, rather than zeroing all interactions between nodes further away from

each other than a certain distance, we propose instead of (5) above to use the follow-

ing transformation on P to form matrix W, which permits both positive and negative
interactions between nodes:
wij ¼
exp � p2ij

2r2

� �
� exp � ðpij�2cÞ2

2r2

� �
if pij < 2c;

exp � 4c2

2r2

� �
� 1 if pij P 2c:

8<
: ð6Þ
In (6), c is a parameter whose meaning and the way to set it will become clear be-

low. The form of the transformation (6) is compared to the one in (5) in Fig. 2, and

several examples of matrices P and their corresponding matrices A and W (obtained

for data used in the experiments described in Section 4) can be seen in Figs. 3–5.

In this way we define two types of interactions between our nodes (the face

sequences): nodes for which wij is positive are said to attract each other with strength



Fig. 2. Comparison of the general forms of the transformations in (5) and (6).
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proportional to wij, and nodes for which wij is negative are said to repel each other

with strength proportional to jwijj. For a certain cluster C we can define the resultant

strength of interaction F ðijCÞ for each node i 2 C as F ðijCÞ ¼
P

j2C;j 6¼i wij and use it

to define a measure for the overall structural stability of a cluster C as
ZðCÞ ¼
X
k2C

F ðkjCÞ ¼
X
i2C

X
j2C

wij: ð7Þ
The more positive (7) is, the more stable the structure of C is considered to be. For

the purposes of the clustering algorithm introduced in Section 3.2, a given set of

nodes C is recognized as a valid cluster only if
F ðkjCÞP 0 for all k 2 C; ð8Þ

i.e., when each of the nodes k receives as a whole more attraction than repulsion

from the rest of the members of C (note that ZðCÞP 0 is not a sufficient condition

for C to be a valid cluster).

A set of points C which does not satisfy (8) can be modified into a valid cluster by

splitting (Fig. 6), i.e., removing from it those points l� for which F ðl�jCÞ < 0, to ob-

tain a new cluster C� ¼ C� fl�g. The order in which points are being removed from

C is important. Assume that the distribution of interaction forces in a certain cluster
C is given by the solid curve in Fig. 6a. Then the point removal starts with the point

l� ¼ argminl2CfF ðljCÞg (the node whose corresponding resultant interaction force is



Fig. 3. The original proximity (dissimilarity) matrices P obtained when the minimal distance between face

sequences is used as a metric. In P, each entry pij represents the distance between the ith and jth face se-

quences. For visualization purposes only, in P the face sequences/nodes have been ordered into their cor-

responding correct groups, that is nodes belonging to the same cluster have been put next to each other. Of

course, such ordering information is not available a priori (neither used by the grouping algorithm), but

has to be found by the clustering itself: (a) data for experiment I (98 sequences, both frontal and multi-view

faces); (b) data for experiment II (552 sequences, both frontal and multi-view faces); (c) data for experi-

ment III (275 sequences, frontal faces). Details about the experiments are given in Section 4.

Fig. 4. The affinity (similarity) matrices A obtained from their corresponding proximity matrices P by us-

ing the transformation (5). The examples for A given in (a)–(c) correspond to the examples of P in Figs.

3a–c.

Fig. 5. The matrices W obtained from their corresponding proximity matrices P by using the attraction/

repulsion transformation (6). The examples forW given in (a)–(c) correspond to the examples of P in Figs.

3a–c.
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shown leftmost in Fig. 6a) and after it is removed, the resultant interaction forces

F �ðkjC�Þ for all k 2 C� are recalculated, leading to a new distribution, enveloped

by the dotted curve in Fig. 6a, and the change in resultant interaction forces for each



Fig. 6. Illustration of the splitting mechanism. In (a), the distribution of the resultant interaction forces for

each sequence k in cluster C before and after the splitting of a single sequence (the leftmost one) is shown,

respectively, under the solid and dotted curves. The distribution of the interaction forces for the sequences

left in C after the splitting process has reached a state of balance between attraction and repulsion (i.e.,

after the cluster validity criterion is satisfied) is shown in (b).

B. Raytchev, H. Murase / Computer Vision and Image Understanding 91 (2003) 22–52 31
node being displayed by dotted arrows. After the removal, nodes (sequences) which

have been near the removed node, i.e., had received large attraction from it, will be-

come more negative, while nodes which have been far from the removed node, i.e.,

had been strongly repelled by it, will become more positive. After this splitting is

done, again the node with the most negative resultant interaction (if such one exists)

is removed, the forces acting on the remaining nodes are recalculated, and this pro-

cedure is repeated until either no more nodes with negative resultant forces exist (as

in Fig. 6b), or C� is a singleton, i.e., until the cluster validity criterion (8) is satisfied.
3.2. Clustering by attraction and repulsion (CAR1)

The actual clustering algorithm will be explained here (pseudocode is given in

Fig. 7), making use of the definitions introduced in the previous subsection. We as-

sume that initially given are N unlabelled face sequences from L categories, and the

objective is to group them into clusters without using any category-specific informa-

tion provided in advance (L, the number of different people is also unknown). Essen-
tially, our algorithm repeats the following two merge and split steps:

Step 1. Merging. Assume that each of the available face sequences SðaÞ,

SðbÞ; . . . ; SðkÞ; . . . can be represented by nodes a; b; . . . ; k; . . ., each node initially forming

a separate set, so that we have K ¼ N singletons Ca ¼ fag, Cb ¼ fbg; . . . ;Ck ¼



Fig. 7. Pseudocode for the CAR1 algorithm. How to determine c� is explained in the text.
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fkg; . . .CK¼N ¼ fNg. For all k ðk : 1 . . .KÞ, merge set Ck with set Cl for which

l ¼ argmaxifZðCk [ CiÞg and which also must satisfy the following conditions

(a)–(c):
ðaÞ
X

i;j2Ck[Cl

wij P 0; ð9Þ
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ðbÞ 9wij > 0; i 2 Ck; j 2 Cl; ð10Þ

ðcÞ jCkj6 jClj; ð11Þ
so that Ck is not changed if no Cl satisfying (9)–(11) exists. Condition (10) is nec-

essary to guarantee that there exists a force of attraction between the two sets

candidates for a merge (this is not necessarily satisfied if (9) is satisfied).

Step 2. Splitting. If K sets are obtained after the merging step, for each set

Ckðk : 1; . . . ;KÞ check whether it forms a valid cluster satisfying (8), that is whether

each member of that cluster totally receives more attraction than repulsion from the

other members of the same cluster. The sequence-member l� with lowest value of

F ðl�jCkÞ < 0 (if such l� exists), is removed from Ck to form a new singleton CKþ1,
which will participate in the following merge step (as a candidate for a merge). After

the removal of the most negative member, the resultant interaction forces for the re-

maining sequences are updated, again the most negative member (if existing) is re-

moved to form the singleton CKþ2 and the above procedure is repeated until either

no more negative members remain in Ck or it is a singleton.

The merging and splitting steps above are repeated until their execution does not

lead to the formation of any new clusters or to changes in the already existing ones.

Each repetition of a merge step followed by a split step forms one cycle. Several cy-
cles may be necessary before the partitioning reaches a steady state for a certain va-

lue of the parameter c, which determines the point where attraction turns into

repulsion (see Fig. 2). Our algorithm starts with a very low value of c (i.e., attraction
exists only between nodes the distance between which is very short), and each time a

steady state is reached for the partitions, c is increased by a step Dc (which can be set

depending on the available computational resources, see Fig. 8 for an example of a

sequence of transforms wijðcÞ ¼ f ðpijÞ), and everything repeated again until c reaches
a certain value c� and the partition obtained for the steady state at this value is re-
ported as the final result. This c� is the only parameter which our algorithm needs to

be determined, apart from r in (6), which we can conveniently set to r ¼ c, as chang-
ing r produces only some change in the slope of the repulsion/attraction curves in

Fig. 8, but does not influence significantly the general form of the transformation

which is most important (but note that r is important for algorithms which use

(5) instead of (6), since for them it determines which entries in A will be zeroed!).

Since c� depends on the metric being used, one way to deal with it is to find exper-

imentally a value which produces good results for a certain metric and a sufficiently
large dataset, and fix c� to that value, in the expectation that it will work also when

new data is added to the same dataset. However, it would be much better if there is a

way to determine c� automatically for each different instance of a metric or dataset,

without making any additional assumptions. In the following lines we will propose

one such method to determine c� automatically in a more objective and data-driven

way, which seemed to work fine for all our experiments, and was used to obtain the

results reported in Section 4.

We define the normalized global partition energy obtained for a certain value of
c as



Fig. 8. A sequence of the attraction/repulsion transform (6) obtained in successive steps of Dc ¼ 50 for the

parameter cr was set to be equal to c, although the form of the transform does not change significantly for

a wide range of values for rÞ.
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EnðcÞ ¼
XK
k¼1

X
i2Ck

X
j2Ck; j 6¼i

wijðcÞ
WþðcÞ ; ð12Þ
where K is the number of clusters (partitions) obtained by the algorithm for a certain

value of c, and
WþðcÞ ¼
XN
i¼1

XN
j¼1

aijðcÞ; ð13Þ

W�ðcÞ ¼
XN
i¼1

XN
j¼1

rijðcÞ; ð14Þ

aijðcÞ ¼
wijðcÞ; wijðcÞP 0;
0; wijðcÞ < 0;

�
ð15Þ

rijðcÞ ¼
wijðcÞ; wijðcÞ < 0;
0; wijðcÞP 0:

�
ð16Þ
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When c is small, the total attraction WþðcÞ will be small, the total repulsion W�ðcÞ
will be large, and the number of clusters K also will be large (although most of them

will be singletons)—the resulting partition will be an oversegmentation. As c in-

creases, WþðcÞ will grow larger, while W�ðcÞ and K will decrease. At some point,

WþðcÞ will become larger than W�ðcÞ and eventually K will become 1, that is all
nodes will be squeezed into one enormous cluster. In the range between K ¼ N
and K ¼ 1 there will be some value of c (the sought c�) for which there will be neither

an oversegmentation nor an undersegmentation of the data, and the resulting parti-

tion will represent the structural groups in the best possible way, at least according to

the selected metric and the available dataset.

If we plot the graph of EnðcÞ for datasets of different size and content and for dif-

ferent metrics (see Figs. 9a–c for some datasets used in our experiments here), we will

notice an interesting pattern in its behavior. In all cases, there is a certain value of c
before which EnðcÞ increases with quite a constant slope (while K þ S, as shown in

Figs. 10a–c, decreases in a similar manner; where S is the number of singletons

and K the number of clusters with more than one node inside them), and after which

it enters a plateau phase (or the slope changes abruptly), before starting a steep and

steady growth again. We will select the value of c obtained at the beginning of the

plateau phase as the sought c� (an arrow in Figs. 9a–c shows which value has been

used for the experiments), and we will try to explain the behavior of EnðcÞ and the

reasoning behind our choice with the following arguments. As c increases,WþðcÞ also
increases, i.e., there is more attraction available to more nodes to interact between

themselves, leading to the formation of fewer and larger clusters, and the balance be-

tween attraction an repulsion is such that the new partitions are characterized by a

steadily increasing energetic level, quantified by EnðcÞ. At some point, however, even

though new portions of attraction forces are supplied as before, the balance between

attraction and repulsion for the new structures does not lead to a proportionally

steep increase in EnðcÞ compared to the previous partitions. This situation, which

most likely indicates the beginning of a process of unreasonable ‘‘squeezing’’ of clus-
ters together, will generally continue for some time, during which EnðcÞ plateaus, un-
til finally the system will make a new phase transition (or change of scale in terms of

the global partition), characterized by a new period of steady growth of EnðcÞ. Stop-
ping the algorithm in the beginning of the first plateau phase produced the best re-

sults for all our experiments in the sense that the trade off between error of

misclassification (or recognition rate, quantified by expression (24) in Section 4)

and oversegmentation (generally quantified by the number of clusters obtained)

was optimal for the concrete dataset and metric. (Note that oversegmentation, char-
acterized by too many clusters, leads to very low error of misclassification, but pro-

duces partitionings which are practically useless. This problem will be addressed

again in more detail in Section 4.3.)

To summarize, we hold that using repulsion (rather than discarding the negative

values in W as unnecessary information) together with attraction to guide the group-

ing process permits much fuller exploitation of the structural information hidden in

the relation values of the proximity matrices, which is especially important in the

case when real-world data with lots of noise have to be processed. As can be seen



Fig. 9. The normalized global partition energy En for a succession of partitions obtained by changing the parameter c in small steps Dc. The figures (a)–(c)

show results for En obtained when the minimal distance metric was used between the face sequences, respectively, in experiments (I)–(III). The arrows show the

value of En for which the corresponding c� was determined.
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Fig. 10. Plots showing how K and K þ S change for a succession of partitions obtained by changing the parameter c in small steps Dc. K is the number of

clusters having more than one node inside them, while S is the number of singleton (outlier) clusters. The figures (a)–(c) correspond to Figs. 9a–c.
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from the data in Figs. 3–5, the diagonal blocks, that is the clusters to be found, con-

tain a lot of noise (caused, especially in our case, by factors like the non-uniform

ranges of face-view change among sequences, problems due to illumination changes,

imperfect preprocessing and so on), they are not clearly and unambiguously sepa-

rated from each other and the off-diagonal blocks (remember also that in Figs. 3–
5 the nodes have already been ordered into correct groups, while such information

is not available a priori, this has to be found by the clustering algorithm!), but the

nuances and gradation of the ‘‘noise’’ can be utilized both to distinguish between

structures which otherwise would be considered homogeneous (leading to underseg-

mentation) or to find similarities between structures which otherwise might be taken

apart (leading to oversegmentation).

3.3. Clustering by attraction and repulsion—global optimization (CAR2)

The CAR1 algorithm introduced in the previous subsection optimizes a local cri-

terion (the structural cluster stability in (8) subject to conditions (9)–(11)) and we

would like to know how this would compare with an algorithm based on the same

underlying strategy (the balance between attraction and repulsion) but optimizing

a global criterion (even if it is too slow for a real-time performance). For this purpose

we propose the following algorithm, CAR2, outlined below.

We define a symmetric Boolean matrix X ¼ fxijg of size N � N , called an indicator

matrix, for which xij ¼ 1 if nodes (i; j) belong to the same partition (cluster), and

xij ¼ 0 otherwise (note that xii should always be 1). The ith row of X is the indicator

vector xt
i ði ¼ 1; . . . ;NÞ, whose non-zero entries� indexes show which other nodes are

grouped in the same cluster as node i. According to our definition, a permutation of

X in which all nodes belonging to the same cluster are ordered next to each other

would consist of diagonal blocks of all �1�s, and off-diagonal blocks of all �0�s. The
aim of the algorithm then will be to determine X by optimizing a certain global cri-

terion which is a suitable function of the matrices X (the sought partition) and W
(the input data on which the attraction/repulsion transformation (6) has been ap-

plied). We consider the minimization of the following two criterion (cost) functions:
C1ðXÞ ¼ min

(
�
XN
i¼1

XN
j¼1

xijwij

)
; ð17Þ

C2ðXÞ ¼ min

(
�
XN
i¼1

XN
j¼1

xijwij þ
XN
i¼1

XN
j¼1

ð1� xijÞwij

)

¼ min
XN
i¼1

XN
j¼1

ð1
(

� 2xijÞwij

)
: ð18Þ
The criterion function in (17) maximizes the within-cluster attraction (in the pres-

ence of repulsion), while the criterion function in (18) maximizes the within-cluster
attraction and the between-cluster repulsion at the same time. In order to solve

the combinatorial optimization problems (17) or (18) we use simulated annealing
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[31], a stochastic optimization strategy in which state space is stochastically sampled

by a Markov process, and new solutions are accepted or rejected according to the

Metropolis algorithm [32] with the following transition probabilities:
P ðXold ! XnewÞ ¼ 1 if DCðXÞ6 0;
expð�DCðXÞ=T Þ otherwise;

�
ð19Þ
where DCðXÞ � CðXnewÞ � CðXoldÞ. State changes corresponding to decreases in the

cost function are always accepted, while in addition, to avoid local minima, state
changes corresponding to an increased cost are accepted with an exponentially

weighted probability, determined by the temperature parameter T . The temperature

is gradually reduced during the stochastic search process according to a predeter-

mined cooling schedule [33].

Another important detail is to determine the way in which the configuration Xold

has to be perturbed in order to obtain the new configuration Xnew, or the definition of

a ‘‘move’’ between two configurations. Here we would like a move between two con-

figurations to implement our idea of merges/splits of nodes to/from clusters. For this
purpose, we initially set X to be equal to the unit matrix I, that is the N available

nodes form N singleton clusters, and each move randomly selects some xij ði 6¼ jÞ
whose binary value is flipped as
xnewij :¼ 1 if xoldij ¼ 0;

0 if xoldij ¼ 1;

�
ð20Þ
which can be interpreted in the following way.

(1) If xij is set to �1�, this means that the jth node will be added (merged) to the

cluster which has node i among its members, after being removed (split) from its cur-

rent cluster. In addition to that, the following update of X is necessary:
xnewkj :¼ 1 for 8k for which xoldik ¼ 1; ð21Þ

xnewkj :¼ 0 for 8k for which xoldjk ¼ 1 ðand k 6¼ jÞ: ð22Þ
The updates (21) and (22) performed on X complete the split of the jth node from
its previous cluster and its merge to the new cluster.

(2) If xij is set to �0�, this means that the jth node will be removed (split) from its

current cluster (which has also node i among its members). Also the following update

of X
xnewkj :¼ 0 for 8k for which xoldik ¼ 1 ðand k 6¼ jÞ ð23Þ
is necessary in order to complete the split of the jth node from its previous cluster to

form a singleton (which can be merged again to another cluster at some future

move). If the cooling schedule (the schedule for lowering T ) is chosen to be
T ¼ Tt¼0= lnð1þ tÞ ð24Þ
the algorithm CAR2 introduced above is guaranteed (according to the ‘‘annealing

theorem’’ proved in [34]) to converge to the globally optimal partition of the dataset
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for the given metric, in terms of the global criterions (17) or (18). However, as such a

slow cooling schedule is impractical, we have used instead T ðt þ 1Þ ¼ cT ðtÞ with

0:8 < c < 0:99 as recommended in [18] for practical problems (c was fixed to 0.9 for

the experiments reported in Section 4).

As with CAR1, CAR2 does not need to know the number of identity categories/
clusters K in advance (although it can be easily modified to find exactly K clusters, if

such information is available, by using an N � K matrix X, and slightly modifying

expressions (20)–(23)), and the grouping process is guided by both attraction and re-

pulsion. Its major drawback is that it becomes too slow for more than a few hundred

sequences to be useful for real-time applications. However, as it finds a globally op-

timal solution to our combinatorial optimization problem, it can be used as a bench-

mark against which to compare the performance of other candidate algorithms.

Results obtained by using CAR2 with our datasets will be reported in Section 4.

3.4. The normalized cut algorithm (NCut)

In this and the following subsection we will briefly review two other recently pro-

posed pairwise clustering algorithms, which have been applied successfully to vari-

ous data partitioning problems, and as such can be considered as alternative

methods to try to solve our problem here. Like our algorithms above, both of them

are able to find the natural partitions in a dataset without the need to know the
number of clusters K in advance, although they cannot handle negative values in

the affinity matrix, so in terms of the definitions given in Section 3.1 they permit only

positive interactions (attraction) between the nodes. Results obtained by using those

two algorithms with our datasets will also be reported in Section 4 (readers familiar

with the algorithms reviewed in this and the following subsection might go straight

to Section 4).

The normalized cut (NCut) algorithm [35] is representative of the general tech-

nique called spectral clustering [36]. Spectral methods [37–41] identify good parti-
tions based on the eigenvectors of the affinity matrix A (defined in (5)), or other

matrices derived from it. Unfortunately, at this time there seems to be no general

agreement among authors regarding the question which eigenvectors to be used

and how to obtain the clusters. In particular, NCut considers the generalized eigen-

vectors yi as a solution to
ðD� AÞyi ¼ kiDyi; ð25Þ
where ki is the ith generalized eigenvalue and the diagonal matrix D is the degree

matrix of A defined as
dii ¼
XN
j¼1

aij: ð26Þ
Thus, (26) represents the total interaction (attraction) between node i and all other

nodes. NCut partitions the data in a reverse direction to the merge/split strategy of

CAR1 and CAR2: initially all nodes are considered to form one big cluster (K ¼ 1),
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which is split into two (K ¼ 2) by thresholding the generalized eigenvector corre-

sponding to the second smallest ki, and similarly each of the two resultant partitions

(clusters) can be recursively split into two, until some stopping criterion is met. The

second generalized eigenvector provides a continuous approximation to a discrete

optimization problem (to minimize the so-called ‘‘normalized cut,’’ defined in
(28)–(30)), which requires to minimize the Rayleigh quotient
ytðD� AÞy
ytDy

ð27Þ
subject to the constraints yi 2 f1;�bg and ytD1 ¼ 0 (1 being a vector of all �1�s). The
normalized cut NCut A, B) is defined as
NCutðA;BÞ ¼ cutðA;BÞ
assoðA; V Þ þ

cutðA;BÞ
assoðB; V Þ ; ð28Þ

cutðA;BÞ ¼
X
i2A

X
j2B

aij; ð29Þ

assoðA; V Þ ¼
X
i2A

X
j2V

aij ð30Þ
for a weighted undirected graph GðV;EÞ, which can be partitioned into two disjoint

sets A;B, A [ B ¼ V. (In G, the weights of the edges E connecting the N nodes V are

given by the affinity matrix A). In other words, the discrete optimization problem
above tries to find a bipartition that minimizes the affinity (or attraction) between the

two clusters as a fraction of the total attraction available to each cluster.

The NCut algorithm has the following problems. First, since the constraint that

the generalized eigenvector should take only two discrete values is ignored in order

to be able to obtain the continuous approximation to the original discrete optimiza-

tion problem, it may not be always obvious how to obtain the bipartition, and there-

fore some thresholding has to be introduced to determine the ‘‘splitting point’’ of the

values of the eigenvector (as demonstrated in Fig. 11). Another heuristic has to be
used to decide when to stop the recursive splitting process. These problems make this

(and most other spectral methods) difficult to use, limiting the possibilities for their

use in a completely automated system, at least until they are not formalized in a more

satisfying way. In order to obtain the experimental results for our datasets, we tried

several different heuristics for the thresholds. As these failed to produce consistently

good results, we inspected visually the eigenvector entries and set the thresholds

manually for each bipartition.

3.5. The typical cut algorithm

The typical cut (TCut) algorithm [42] is a recently proposed stochastic pairwise

clustering algorithm, representative of a class of clustering algorithms inspired by sta-

tistical mechanics [21,25], which apply stochastic simulations of certain dynamics to

partition the input data. This particular algorithm is related to the super paramagnetic



Fig. 11. In (a) is shown the generalized eigenvector corresponding to the second smallest eigenvalue of Eq.

(25) in the NCut algorithm, obtained for the graph described by the affinity matrix given in (b). As the

entries in the eigenvector take continuous values, a suitable threshold has to be chosen to obtain a bipar-

tition. Some heuristic has to be employed in order to set a threshold, but it is difficult to obtain good re-

sults in this way for all subsequent bipartitions in the recursively divisive process.
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clustering (SPC) method, based on the granular magnet model of [43]. TCut uses

the contraction algorithm proposed in [44] to generate samples of cuts in the

graph to be partitioned (described by the affinity matrix), from which the ‘‘average’’

or ‘‘typical’’ cut is computed. An r-way cut is a cut which partitions the graph

GðV;EÞ into r disjoint sets ðV1; V2; . . . ; VrÞ, and its capacity is defined asP
a6¼b;i2Va;j2Vb aij. For a given value of r (r ¼ 1 . . .N ) the contraction algorithm gener-

ates a sample of M possible r-way cuts (by merging nodes with probability propor-

tional to the affinity between them) and uses it to estimate the probability prij that the
edge (i; j) between nodes i and j is not a crossing edge of a random r-way cut. Then,

for every integer r between 1 and N , the typical cut (C1;C2; . . . ;CsðrÞ) is defined as the

partition of G into connected components, such that prij < 0:5 for every i 2 Ca, j 2 Cb

ða 6¼ b; a; b ¼ 1; . . . ; sðrÞÞ. The typical cut for each r is found by removing all edges

for which prij < 0:5 and computing the connected components in the remaining

graph. All N resultant typical cuts correspond to different clustering solutions to

the same problem, and in order to provide a measure how ‘‘meaningful’’ or ‘‘inter-

esting’’ a certain solution is, the following function is defined
T ðrÞ ¼ 2

NðN � 1Þ
X
i>j

NiNj; ð31Þ
where Nk ¼ jCkj is the cardinality of the kth cluster. Only partitions which are as-

sociated with large change in T ðrÞ for subsequent values of r are considered, that is

only those for which DT ðrÞ > d (for some threshold d).
To summarize, TCut does not seek the global optimum of a certain cost func-

tion, but is interested in ‘‘averaging’’ the partitions with weights proportional to

their quality (measured by the capacity of the cuts). Like the other algorithms de-

scribed above, TCut is able to find the natural partitions in a dataset without the
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need to be given the number of clusters K in advance. Also, unlike NCut (and most

hierarchical methods), it computes the whole hierarchy of partitions at once, with-

out the necessity to apply recursive divisions into two parts, thus possessing a nat-

ural way to leave outliers unclassified (which in the CAR1 and CAR2 algorithms is

achieved by the singleton-splitting mechanism: all singletons in the final partition
can be thought of as unclassified nodes-outliers, forming a single ‘‘cluster of out-

liers’’). The main problem we met with the TCut method is that all solutions ob-

tained for DT ðrÞ > d have to be inspected, since there is no guarantee that the best

solution will correspond to the maximum of DT ðrÞ, and also it is not clear how to

determine the threshold d in an objective and automatic way. In the experimental

results reported for this algorithm, we inspected the candidate solutions corre-

sponding to the top 20 values of DT ðrÞ and reported the best result found among

them (which of course could not be done in case we did not know the correct an-
swers).
4. Experimental results

In order to evaluate and compare the performance of the above methods, several

experiments were conducted using a dataset of about 600 face image sequences ob-

tained over a period of several months from 33 different subjects. A typical example
of the experimental setting can be seen in Fig. 12, and several time-subsampled face

sequences for different people, extracted from the raw camera input by the prepro-

cessor described in Section 4.1 can be seen in Fig. 13. Illumination conditions were

very demanding and varied significantly with the time of the day during which the

samples were taken. The video sequences� length varied between 30 and 300 frames,

depending on the speed at which the subjects walked in front of the camera, in the

range between slow walking with occasional stops, and running. For each one of 17

of the subjects were gathered between 10 and 50 sequences (about one-third of
which were taken when the subjects did not know that they were being monitored,

that is they moved in their natural way), while less than three (typically only 1) se-

quences were available for the remaining 16 subjects (these were called ‘‘rare visi-

tors’’ and they did not know that they were being monitored by the camera while

they walked).
Fig. 12. An example of an original face image sequence (temporally subsampled) together with the corre-

sponding normalized face-only sequence extracted from it.



Fig. 13. An example of several time subsampled face sequences with category labels (to be obtained by the

algorithm), shown to the left and the time stamp labels available from the preprocessor, shown to the

right.
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4.1. Preprocessing

Since the concrete implementation of the preprocessor is not essential for the

operation of the learning algorithms, only a brief overview will be provided here

(for more details see our previous work in [45]). All that is required from the pre-

processing is to obtain image sequences of the moving objects of interest and to

guarantee that each separate image sequence corresponds to one and the same ob-

ject only (for example by tracking). Here we assume that input is provided from a

video camera fixed in a constant position and continuously monitoring the scene
in front of it. The subjects enter the scene, walk towards the camera, and finally

exit the scene. To extract the face-only image sequences, a multi-resolution image

pyramids are formed from the binary silhouettes of the moving subjects and the

face area is extracted after analyzing the x- and y-histograms of the binary silhou-

ettes at different resolutions (alternative algorithms for face tracking/extraction

may be employed, depending on the concrete task; see [46,47] for examples).
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The extracted and size-normalized (by subsampling) face-only image sequences are

used to calculate the proximity matrix P using the metrics explained in Section 2.

The matrices A and W needed for the experiments were calculated using respec-

tively (5) and (6).

4.2. Datasets

We prepared two different datasets to be used in the following experiments:

(a) Dataset A. In this dataset, the subjects were just walking forward toward the

camera. As a result, this dataset contained predominantly frontal faces, with

only a few side-view faces included at the end of the sequences, when the subjects

passed beside the camera. Sequences T1, F1, K1, K3, R1, R3 in Fig. 13 are rep-

resentative for the data included in this set.
(b) Dataset B. In this dataset, the subjects were told to look to the left and right, up

and down, as they moved towards the camera. Both frontal and side-view faces

were represented. Sequences T2, T3, F2, F3, K2, R2 in Fig. 13 are representative

for the data included in this set.

Samples with and without glasses were included for all subjects (except for the

‘‘rare visitors’’) and hairstyles changed with time. Resolution of the original images

was 320� 240 pixels, and 18� 22 pixels for the size-normalized face-only images. Be-

cause of the large volume of data, we were unable to manually inspect all the face
sequences output from the preprocessing module, but from the few inspected ones

it was obvious that the dataset on which the system had to perform contained many

instances of noisy data, in the form of erroneous face croppings and misalignments,

large variations in illumination with face shadows, and so on, as would be expected

in a real-world situation.

4.3. Evaluation of the clustering

We propose the following formula to calculate the self-organization (recognition)

rate q of the final clusters:
q ¼ 1:0

�
� EAB þ EO

N

�
� 100%; ð32Þ
where N is the total number of sequences to be grouped, EAB is the number of

sequences which are mistakenly grouped into cluster for certain category A, al-

though in reality they come from category B, and EO is the number of samples

gathered in clusters in which no single category occupies more than 50% of the

nodes inside them. While the meaning of EAB above is obvious, analysis of many

different partitions obtained for different datasets by different algorithms revealed
the following interpretation for EO. A small EO (in comparison to EAB) usually

signals the relatively harmless presence of some small clusters of outliers, which

have happened to be very near to each other, while a large value of EO most

probably is a sign of bad partitioning (undersegmentation), and most likely occurs

when the clustering algorithm has been unable to discriminate between the members
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belonging to several different identity categories, effectively mixing them together in

some huge cluster(s).

It should be noted, however, that although the self-organization (recognition) rate

proposed above can evaluate the error of misclassification contained in the final par-

titioning precisely, it provides only partial information about the structural quality
of the obtained partitioning. That is, it can detect (from the value of EO above) when

a certain clustering leads to an undersegmentation of the data, but (especially in the

absence of a suitable cluster validation criterion, like the normalized global partition

energy En for the CAR1 algorithm, or DT ðrÞ for the TCut) it can be fooled by a clus-

tering leading to oversegmentation, which might produce very high q, although the

resulting partitioning might be practically useless (as the data is split into too many

clusters). When the true partitioning is known (as in the case of the experiments re-

ported below), a more objective judgement about the partitioning quality can be ob-
tained by the combined information provided by (a) the number of the true

partitions (that is the number of identity categories); (b) the number of the obtained

partitions K; (c) the number of detected singleton-outliers S; and (d) the recognition

rate q, above. All these have been provided in the experimental results summarized

in Tables 1–4 (see also Fig. 10).
Table 1

Recognition results for the CAR1 algorithm

Experiment

(sequences)

Distance

used

Identity

clusters

Clusters

found

Singletons

found

c EAB EO q (%)

I(98) M 14 18 9 450 3 5 91.8

I(98) H 14 20 7 515 6 0 93.9

II(552) M 33 64 22 450 19 30 91.1

II(552) H 33 59 29 525 30 20 90.9

III(275) M 17 24 15 475 11 3 94.9

III(275) H 17 23 15 550 18 5 91.6

Results when the between-sequence distance was the minimal distance (M) and the modified Hausdorff

distance (H) are shown.

Table 2

Recognition results for the CAR2 algorithm

Experiment

(sequences)

Distance

used

Identity

clusters

Clusters

found

Singletons

found

c EAB EO q (%)

I(98) M 14 19 14 430 2 0 98.0

I(98) H 14 20 8 515 2 4 93.9

II(552) M 33 65 25 450 12 44 90.0

II(552) H 33 61 31 525 25 99 77.5

III(275) M 17 22 18 475 13 17 89.1

III(275) H 17 23 15 550 21 16 86.2

Results when the between-sequence distance was the minimal distance (M) and the modified Hausdorff

distance (H) are shown.



Table 3

Recognition results for the NCut algorithm

Experiment

(sequences)

Identity

clusters

Clusters

found

Singletons

found

r EAB EO q (%)

I(98) 14 18 8 200 1 4 94.9

II(552) 33 54 26 200 38 53 83.5

III(275) 17 34 15 200 21 0 92.4

Results when the between-sequence distance was the minimal distance are shown.

Table 4

Recognition results for the TCut algorithm

Experiment

(sequences)

Distance

used

Identity

clusters

Clusters

found

Singletons

found

r EAB EO q (%)

I(98) M 14 15 12 180 9 0 90.8

I(98) H 14 14 23 220 10 0 89.8

II(552) M 33 27 195 150 0 225 59.2

II(552) H 33 25 187 200 0 211 61.8

III(275) M 17 8 49 180 0 101 63.3

III(275) H 17 17 50 200 15 67 70.2

Results when the between-sequence distance was the minimal distance (M) and the modified Hausdorff

distance (H) are shown.
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4.4. Experiments (unsupervised learning)

The following three experiments were conducted.

Experiment I. This experiment used a dataset containing face sequences ran-
domly selected from both datasets A and B, that is both frontal and multi-view

sequences were included. The samples included a total of 98 sequences, 7 sequences

being available for each of 14 different subjects (identity categories). The purpose

of this experiment is to test the algorithms on a dataset which is (a) easy to be vi-

sualized, as the samples are distributed evenly among the categories; (b) relatively

clean, as the small size of the datasets permitted the results of the face extractor to

be inspected and ‘‘cleaned’’ from obviously wrong face croppings; (c) relatively

small, which might render this experiment relatively easier (although definitely
not trivial), but useful, in conjunction with the other two experiments below, to

provide an information about how the performance of the algorithms changes with

change in the size of the input dataset. Additionally, there are many practical cases

when the algorithms have to perform on small datasets, possibly because of insuf-

ficient data.

Experiment II. This experiment used all available data, that is all data in sets A

and B put together. Both frontal and side-view faces were represented in this rela-

tively large dataset, which included 552 face sequences from 33 subjects.
Experiment III. Only data from dataset A (frontal or near-frontal faces only) were

used in this experiment. The purpose was to isolate the ‘‘multi-view’’ factor and
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report results obtained for unsupervised frontal face recognition. The dataset in-

cluded 275 face sequences from 17 subjects.

Each of the three experiments above were conducted using the four different

algorithms described in Section 3 and the recognition results are summarized in

Tables 1–4.

4.5. Experiments (supervised learning)

For the sake of completeness and for reference, we also conducted a supervised

learning based version of experiments I–III. We prepared a modified (for multi-view

face recognition) version of the supervised algorithm ARENA [27], which is summa-

rized in (1)–(4) below:

(1) the proximity matrix PN�N of N face sequences from K face categories is calcu-
lated in the same way as for the unsupervised learning case;

(2) p% of the samples (p ¼ 20, 40, 60, and 80%) from each category are selected ran-

domly as training data, the rest is used as test data;

(3) for each test sample, the distance to each of the training samples is calculated

(actually read from the already calculated proximity matrix P), and the test sam-

ple is classified to the face category corresponding to the best match (minimal

distance);

(4) the final recognition rate r (percent correctly classified test samples) is calculated
as the average between 30 different runs of (2)–(3), that is using different random

partitions of training/testing sample sequences.

The same datasets used in experiments I–III from Section 4.4 have been used, al-

though subjects for which there were less than three sequences (the rare visitors) were

excluded from the training set. The results are summarized in Tables 5(a) and (b).
Table 5

Recognition results for the supervised learning based experiments

Experiment Sequences Face

categories
r (%)

p ¼ 20% p ¼ 40% p ¼ 60% p ¼ 80%

(a)

I 98 14 83.47 93.98 97.89 99.05

II 534 17 87.80 94.75 97.33 98.90

III 275 17 88.55 95.97 97.76 98.73

(b)

I 98 14 83.10 94.22 97.72 99.05

II 534 17 85.92 93.95 96.70 98.65

III 275 17 85.99 94.94 97.31 98.55

The between-sequence distance was the minimal distance, while the between-face distance in (a) was

the L�
0 norm in (2) (as proposed in [27]) and the L2 norm for (b). The recognition rates r were calculated as

the average between 30 different runs of the algorithm described in Section 4.5, for different randomly

selected partitions of training/testing sample sequences (p is the percent of the samples from each category

which are selected randomly as training data, the rest being used as test data).
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4.6. Results

As can be seen from the experimental results in Tables 1–4, all four clustering

methods managed to cluster the face sequences into identity categories to some ex-

tent. Overall, the CAR1 algorithm produced the best results, with recognition rates
over 90% for all experiments and acceptable structural quality of the obtained par-

titions, the latter being judged by comparing the number of obtained clusters to the

number of the original identity clusters (as was explained above, if those are not

very different, it is unlikely to have an oversegmentation) and small values for

EO (which means there was no undersegmentation either). A certain difference be-

tween the number of obtained clusters and the number of the original identity clus-

ters is acceptable and inevitable, having in mind that the illumination conditions

were very demanding and the data was taken over a long period of time, while
the distance measures were not specifically chosen to be invariant under such con-

ditions.

The results obtained for the CAR2 algorithm were comparable to those obtained

by CAR1, probably reflecting their common strategy to use both repulsion and at-

traction, although their optimization strategies are different. An undersegmentation

was produced by CAR2 for experiment II when the Hausdorff metric was used, as

can be judged by the high value of EO for this case. Also, CAR2 is the only algorithm

among those compared here, which cannot run in real-time for more than several
hundreds of sequences, that means that it is necessary to find faster ways to imple-

ment the optimization in (17) and (18).

Of the other two algorithms, NCut also produced results that were comparable

to those of CAR1 and CAR2, although it should be noticed that for this algo-

rithm, the thresholds which determine the split into two partitions were adjusted

manually at each step (as explained in Section 3.4) in order to obtain the best pos-

sible results. TCut, also fully automatic like CAR1 and CAR2 (although it pro-

vides no guidance how to determine r and how to choose between candidate
partitions corresponding to different values of DT ðrÞ, so we tried different values

for those and reported the best results), produced acceptable results for experiment

I, although for experiments II and III it typically produced either severe overseg-

mentation (more than half of the sequences forming singletons, which is meaning-

less as a partitioning), or undersegmentation, characterized by several huge

clusters in which several categories were mixed together (thus the high values of

EO).

The results obtained from the supervised learning based experiments in Section
4.5 show that if sufficient training data is used, nearly perfect results can be obtained

in the supervised mode. This shows that whenever category-specific information is

available and the required labeling of the input video stream into categories is not

too costly, the use of such information is advantageous. On the other hand, in situ-

ations in which category-based information is either unavailable or impractical to

use, the general unsupervised approach for face recognition we propose in this paper

can be utilized, producing results comparable to the supervised case, even though

based on much less information.
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5. Conclusion

In this paper we have proposed a novel method for unsupervised face recognition

from video sequences of time-varying face images obtained over an extended period

of time in real-world conditions. The learning process implemented by the method
does not rely on category-specific information provided by human teachers in ad-

vance, but rather lets the system find out by itself the structure and underlying rela-

tions inherent in the sensory input. The proposed method provides the following

important advantages: (a) it allows all stages of the resulting system to be completely

automated, avoiding the need for manual segmentation and labeling of the input

stream; (b) it can be easily implemented as a pairwise clustering algorithm (CAR1)

which is simple, fast and robust to noise in the data; (c) there are no free parameters

which cannot be set in an objectively determined way; (d) both frontal and side-view
faces can be recognized by the method.

In addition, CAR1 and CAR2, the two novel pairwise clustering algorithms intro-

duced in this paper, exhibit several properties which render them interesting as gen-

eral clustering methods, even outside the context of the specific problems treated in

this paper. The clustering process is guided by two types of interaction forces, attrac-

tion and repulsion, imposing both positive and negative values on the matrices of

pairwise relations derived from the original proximity matrices, allowing fuller ex-

ploitation of the pairwise information hidden in the proximity data. This also leads
to a natural formulation both of an optimization criterion (defined in terms of the

interplay between attraction and repulsion) and a clustering validation criterion (de-

termining the suitable trade-off between over- and undersegmentation of the data,

based on the normalized global partition energy). Additional experiments (not re-

ported here) on several standard clustering datasets revealed also that by controlling

the level of repulsion, the clustering algorithm can be modified to detect clusters of

either complex forms, or of more compact ones. Another important advantage of the

proposed clustering algorithms is that it is not necessary to know in advance the
number of clusters (which is a too strong and unrealistic assumption for many prac-

tical problems)—it is found directly from the data as the one giving the most natural

partitioning of the dataset, in terms of the optimized partitioning criterion, for the

given metric.

In this paper we report results from several face recognition test experiments using

both frontal and side-view face sequences obtained under demanding real-world con-

ditions. The results seem encouraging, having in mind the difficulty of the task, the

bottleneck of the unreliable preprocessor output and the sub-optimal distance mea-
sures used. In these tests, the new algorithms compared favorably to two other pair-

wise clustering algorithms, which have been applied successfully for solving similar

problems in image segmentation tasks.

It is expected that the proposed method can find application in video surveillance

systems, as an integral part of a human–computer interface, for content-based infor-

mation retrieval from video databases of multi-view objects (like faces), and gener-

ally in situations when manual segmentation and labeling of the input video stream

into categories might be considered impractical or impossible.
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