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Abstract. This paper presents an approach for realistic virtual view
generation using appearance clustering based local view transition model,
with its target application on cross-pose face recognition. Previously, the
traditional global pattern based view transition model (VTM) method
was extended to its local version called LVTM, which learns the lin-
ear transformation of pixel values between frontal and non-frontal image
pairs using partial image in a small region for each location, rather than
transforming the entire image pattern. In this paper, we show that the
accuracy of the appearance transition model and the recognition rate can
be further improved by better exploiting the inherent linear relationship
between frontal-nonfrontal face image patch pairs. For each specific lo-
cation, instead of learning a common transformation as in the LVTM,
the corresponding local patches are first clustered based on appearance
similarity distance metric and then the transition models are learned
separately for each cluster. In the testing stage, each local patch for the
input non-frontal probe image is transformed using the learned local
view transition model corresponding to the most visually similar cluster.
The experimental results on a real-world face dataset demonstrated the
superiority of the proposed method in terms of recognition rate.

1 Introduction

Due to its wide range of potential real-life applications such as identity au-
thentication, intelligent surveillance, human-computer interface and so on, face
recognition has been one of the most active research topics in the biometric field
within the computer vision and the pattern recognition communities [1]. Unlike
other biometric techniques such as fingerprint recognition, palm print recogni-
tion or iris recognition, face recognition is inherently a passive and non-intrusive
technique that has the advantage of not requiring cooperative subjects. That
is to say, a practical face recognition system is supposed to have the ability to
recognize the face of an uncooperative subject in an arbitrary situation and un-
controlled environment setting, even without the target subject noticing. This
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advantage of environment setting generality also poses great challenges to the
problem of face recognition because as the viewing condition changes, the cap-
tured face appearances might vary too drastically to be easily identified. Within
the past several decades, many methods have been proposed for face recognition.
However, most of those traditional methods can successfully recognize faces only
when face images are captured under constrained condition and controlled envi-
ronment, for example recognize frontal faces with normal expressions and typical
indoor illuminations, which are usually unrealistic in many real-life application
scenarios. Usually the performance of these traditional methods will degrade
greatly when face images are captured in unconstrained conditions caused by
factors such as varying viewpoints, illumination changes, occlusions, aging, ex-
pressions and poses.

This work studies the problem of face recognition across poses, where each
subject has a frontal gallery face image stored in the database and the probe
image is not necessarily frontal. It is of great interest in many real-world face
recognition application scenarios such as surveillance systems, where the sub-
jects are either indifferent or uncooperative, so the captured face images are
usually low-resolution and non-frontal. Pose variation has been identified as one
of the prominent difficult problems in the research of face recognition [1]. The
major difficulty of the cross-pose face recognition is that the intra-person ap-
pearance differences caused by rotation are often larger than the inter-person
differences. That is to say, the distance between appearance vectors of two faces
of different persons under similar viewpoints is much smaller than that of the
same person under different viewpoints. This phenomenon makes the traditional
face recognition methods such as eigen-face [2] or fisher-face [3] infeasible. Ob-
viously one straightforward method for cross-pose face recognition is to actively
compensate pose variations by providing gallery views in each rotation angles
to recognize rotated non-frontal probe views. This can be achieved by first col-
lecting and preparing multiple real-view templates beforehand for every known
individual in each specific pose condition. Although the number of required real
gallery images can be reduced by proper quantization on the rotation angles due
to the fact that general face recognition algorithms are able to tolerate small
pose variations to some extent, the tedious process of collecting multiple face
images in different poses for real-view based matching is still unfavorable and
even impractical in some cases. For example, in the application of airport se-
curity surveillance systems, there is only one frontal passport photo per person
that could be collected and stored in the database.

Previously, both 3D model based methods [4][5] and 2D appearance based
methods [6][7][8][9][10] have been proposed for pose invariant face recognition.
3D Morphable Model [4] is a typical 3D model based method for pose invariant
face recognition. The 3D morphable model is built using the principal component
analysis of the 3D facial shapes and textures obtained from laser scanner devices
where inter-person pixel correspondences are established using the optical flow
on the 3D surfaces. The 3D Morphable Model can then realize recognition either
by transforming non-frontal face images to frontal view or by directly performing



Virtual view generation using clustering based local view transition model 3

Fig. 1. Cross-pose face recognition based on virtual view generation.

the recognition by using the coefficients of the morphable model. But usually it
is difficult to detect dense facial feature points that are accurate enough for the
model fitting from low-resolution surveillance camera images.

Among the 2D appearance based methods, one of the successful approaches
is to first generate a virtual frontal view by applying pose transformation on any
given non-frontal face view. The View-Transition Model (VTM) [6] is a notewor-
thy work for pose transformation that can construct human appearance models
for different poses which have proper texture information from a limited num-
ber of input images. The VTM method transforms views of an object between
different poses by linear transformation of pixel values in images. For each pair
of poses, a transformation matrix is calculated from image pairs of the poses
of a large number of training data. The VTM was further extended to Local
VTM (LVTM) in a patch-wise way [7] and it was shown that a more satisfac-
tory face recognition result can be achieved using the virtual frontal face view
generated by the local patch based LVTM than the original global patch based
LVTM. This paper further extends the LVTM and presents a framework for
face recognition across poses based on virtual frontal view generation using the
LVTM with local patches clustering, which is denoted as c-LVTM hereafter. The
proposed c-LVTM can describe the inherent transforming relationship between
pixel values of patch pairs in a more precise way, thus more realistic virtual
frontal face images can be generated and a higher recognition rate can be ob-
tained. The experimental results on a real-world face dataset demonstrated the
superiority of the proposed method.

The rest of this paper is organized as follows: in section 2, the underlying
principle of the original VTM for pose transformation and the LVTM based face
recognition methods are introduced briefly. Section 3 describes the proposed
clustering based local VTM method (c-LVTM) in detail. Section 4 introduces
the experimental result and section 5 is the summary.

2 Cross-pose face recognition by virtual frontal view
generation

Instead of directly classifying the probe non-frontal face image, VTM or LVTM
based cross-pose face recognition methods firstly synthesize a virtual frontal face
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view before a general face recognition procedure is applied, as shown in Fig. 1.
Both the VTM and the LVTM methods use a general training image dataset
consisting of faces of a large number of individuals viewed from both frontal
and various profile angles. The linear transformations learned from the training
dataset are applied to the probe non-frontal face images, either in a global way
as in the VTM or in a local patch based way as in the LVTM, to generate the
counterpart virtual frontal face image that is then fed into a general traditional
face recognition engine.

More specifically, given a training multi-pose face image datasetΘ:{Q1
ϕ, ...,Q

N
ϕ

,Q1
θ1 , ...,Q

1
θL , ...,Q

N
θ1 , ...,Q

N
θL}, where N is the number of training subjects, Qn

ϕ,
(n = 1, ..., N) represents the frontal face image for the n-th subject as a vector
which is a column vector that has pixel values of the image as its elements and
Qn

θl
, (l = 1, ..., L, n = 1, ..., N) represents the non-frontal face image for the n-th

subject with the pose rotation angle θl. For an input probe non-frontal face im-
age Pθl , the purpose is to generate its virtual frontal image Pϕ using the linear
transformation learned from the training dataset. The VTM can be applied for
virtual frontal face generation by one or any number of input images. However,
in the interest of simplicity, we describe the frontal face generation algorithm
for one non-frontal face input image only and assume that the training dataset
consists of frontal-nonfrontal face image pairs with a single rotation degree θ.
The VTM calculates the linear transformation T beforehand using the training
dataset by solving the following equation [6]:

[
Q1

ϕ · · · QN
ϕ

]
= T

[
Q1

θ · · · QN
θ

]
(1)

Then the VTM generates Pϕ, which denotes the virtual frontal face image
for the probe image, from the input non-frontal probe face image Pθ as follows:

Pϕ = TPθ (2)

Faces of two persons might have similar parts although these faces are not
in total similar. Thus transforming the input face image using the information
of the entire face image of other individuals might degrade the characteristics of
the input individual’s face. In order to solve this problem, the VTM was further
extended in a local patch based way called Local View Transition Model (LVTM)
[7], which achieves face pose transformation by synthesizing a face image from
partial face image patches. That is to say, instead of transforming directly the
entire global face image, the LVTM transforms face patches that are partial
images of a face image for each location in the face image.

Let qϕ(x,y) and qθ(x,y) represent face patches with patch center location at
(x, y) of corresponding frontal and non-frontal global face image planes Qϕ and
Qθ respectively. The LVTM learns the location specific linear transformsT(x,y)in
a similar way with the VTM as follows:

[
q1
ϕ(x,y) · · · q

N
ϕ(x,y)

]
= T(x,y)

[
q1
θ(x,y) · · · q

N
θ(x,y)

]
(3)
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Fig. 2. Face image synthesis by local patches aggregation.

It should be noted that the LVTM transforms each local area of an image
while the VTM transforms the entire area of an image. Then the virtual frontal
appearances for each local patches can be generated as follows:

pϕ(x,y) = T(x,y) pθ(x,y) (4)

After this, the LVTM synthesizes an output frontal face imagePϕ from all the
transformed local patches pϕ(x,y). The pixel values of regions where face patches
are overlapped are calculated by averaging the pixel values of the overlapped
patches as illustrated in Fig. 2. Experimental results showed that the LVTM can

Fig. 3. Affine alignment using landmarks. Different strategies are used for training and
testing stages. (a) In the training stage, in order to learn the linear transformations
more accurately, the face images are finely affine aligned using multiple (15) landmarks
labeled manually. (b) While in the testing stage, the input probe face image is only
roughly affine aligned using three landmarks (left eye, right eye, and nose tip), which
can be easily detected by any off-the-shelf facial point detectors.
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achieve a higher recognition rate than that of using VTM for pose transformation
[7].

3 Virtual view generation using clustering based LVTM
(c-LVTM)

The key point of VTM-like methods is the underlying linear relationship in
the frontal and non-frontal face image pairs. Next we will show that the accu-
racy of the appearance transition model and the recognition rate can be further
improved by better exploiting the inherent linear relationship between frontal-
nonfrontal face image patch pairs. This is achieved based on the observation
that variations in appearance caused by pose are closely related to the corre-
sponding 3D structure, and intuitively, frontal-nonfrontal patch pairs from more
similar local 3D face structures should have a stronger linear relationship. Thus
for each specific location, instead of learning a common transformation as in the
LVTM, in the proposed c-LVTM, the corresponding local patches are first clus-
tered based on the appearance similarity distance metric and then the transition
models are learned separately for each cluster. We assume that those patches
with similar 3D shapes and thus similar 2D appearances should have a more pre-
cise linear mapping relationship. For the purpose of describing the relationship of
frontal-nonfrontal pairs more precisely, it is better to learn the transformations
specific for each cluster separately, rather than learning just a single common
linear mapping using all the patch pairs for a specific location. As Fig. 3(a)
shows, in order to learn the linear transformations in a precise way, the training
face image pairs are finely affine aligned using multiple landmarks. However in
the testing stage, as Fig. 3(b) shows, the input probe face image is only roughly
affine aligned using three landmarks (left eye, right eye, and nose tip), which can
be easily detected by any off-the-shelf facial point detectors.

More specifically, we first cluster the local patches qθ(x,y) for each location
(x, y) into K clusters based on the appearance similarity using the Normalized
Cross-Correlation score[11], where cluster k has ck samples as {q1

θ(x,y), ...,q
ck
θ(x,y)}.

Then for each cluster, the corresponding linear transformation Tk
(x,y), which is

both location specific and local 3D structure specific, is learned as follows,

[
q1
ϕ(x,y) · · · q

ck
ϕ(x,y)

]
(5)

= Tk
(x,y)

[
q1
θ(x,y) · · · q

ck
θ(x,y)

]
, (k = 1, ...,K)

In the testing stage, the probe non-frontal face image is first roughly affine
aligned, for example using only three landmark points at left eye, right eye
and mouth, which can be easily obtained using any standard facial feature point
detector. Then for each local patch of the input non-frontal face image pθ(x,y), the
most visually similar cluster in the training set is searched in the neighborhood
regions ([x− ϵ, x+ ϵ], [y− ϵ, y+ ϵ]) space of a specific location (x, y). If we denote
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Fig. 4. The illustration of main steps of the proposed c-LVTM method. The steps of
the appearance clustering based local transition models computation and the optimum
transition model searching are depicted by taking the local patches located on the
left eye as an example. First, the local patches location on the left eye are clustered
into clusters of cluster 1, cluster 2,..., cluster L based on appearance similarity.
Then for each cluster, the local transition models T 1, T 2,..., T L are computed
using the corresponding local patches. Then for left eye local patch of the input non-
frontal face image, the most visually similar clusters in the training set is searched in
the neighborhood regions and local transition model corresponding to the most visually
similar patch found is used to perform the transformation. The final transformed global
frontal face image is the aggregation of all transformed local patches where the pixel
values of the overlapped patches are averaged.
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the most visually similar patch found resides in the kopt-th cluster of location
(xopt, yopt), then

pϕ(x,y) = T
kopt

(xopt,yopt)
pθ(x,y) (6)

The final transformed global frontal face image is aggregated from pϕ(x,y)

in a similar way as in the LVTM. The main idea of the appearance clustering
based local transition models computation and the optimum transition model
searching is illustrated in detail in Fig. 4 and the flowchart of the proposed
c-LVTM is described in Fig. 5.

The differences between the VTM, the LVTM and the proposed c-LVTM are
illustrated in Fig. 6. The VTM learns a global linear mapping on the holistic face
image plane. The LVTM learns location specific linear mapping for each local
patch. The proposed c-LVTM learns linear mappings that are both location
specific and local 3D structure specific.

Fig. 5. The flowchart of the proposed c-LVTM method.
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Fig. 6. The difference in how the image patterns are selected for the transition model
computation between VTM, LVTM and the proposed c-LVTM method.

4 Experiment

We used a subset of the face image dataset provided by SOFTPIA JAPAN to
demonstrate the effectiveness of the proposed method. The subset consists of 250
individuals’ images. They were taken with horizontal angles varying from −30
degrees to 30 degrees at 10 degrees interval as shown in Fig. 7. We compared
the performance of using input images directly, the VTM, the LVTM and the
proposed c-LVTM by 5-fold cross-validation. We transformed non-frontal face
images to virtual frontal face images and then input the transformed images to
a system that recognizes persons from the virtual frontal face images using a
common subspace based face recognition algorithm, where the subspace for each
face image was spanned by the slide window shifting extended sample set. The
training images were precisely affine aligned using 15 landmark points and the
testing images were roughly aligned using only 3 landmark points at left eye,
right eye and mouth.

The image size was 32 × 32 in pixels and the face patch size was set to be
16× 16 in pixels. The number of the cluster centers K was set to 4. The region
of neighborhood searching ϵ was set to 5. The visual effects of the transformed
virtual frontal face images using different methods are illustrated in Fig. 8. It
can be seen that the generated virtual frontal face image using the proposed
c-LVTM method has higher fidelity than that of other methods. This trend is
further demonstrated in the following face recognition rate comparison which is
illustrated in Fig. 9. The recognition rate of the straightforward baseline method
that using the non-frontal face images directly as input is much lower than that

Fig. 7. The sample images of the multiple pose faces.
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Fig. 8. The comparison of the visual effect of the transformed virtual frontal face image
using different methods. It can be clearly seen that the virtual frontal face images
generated using the proposed c-LVTM method have the highest visual fidelity.

of using the virtually generated frontal face images as input, either using VTM,
LVTM or the proposed c-LVTM. Furthermore, the recognition performance of
the proposed c-LVTM outperforms the VTM and LVTM in two ways: 1) c-LVTM
has a higher recognition rate than VTM and LVTM; 2) Though all methods
have a rate decreasing trend as the pose angle increases, the proposed c-LVTM
has a more robust property against pose angle degree. That is to say, as pose
angle increases, the curve of rate-vs-angle for c-LVTM drops less drastically than
that of VTM and LVTM. The recognition rate comparison results validate our
assumption that learning both location specific and local 3D structure specific
linear transforms can better capture the relationship between frontal and non-
frontal patch pairs than just learning a single common linear transformation.

5 Summary

In order to better exploit the underlying linear relationship between frontal and
non-frontal pairs, this paper presented a framework for face recognition across
pose based on virtual frontal view generation using the Local View Transition
Model (LVTM) with local patches clustering. The proposed method further ex-
tended the LVTM by learning not only the local patch position specific transfor-
mations, but also the local 3D structure specific linear transforms. Experimental
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Fig. 9. Comparison of recognition rates across different angles. The input non-frontal
face images are transformed using the VTM, LVTM and the proposed c-LVTM, re-
spectively. The rate for the straightforward method of using the input non-frontal face
images directly is also included for comparison.

results showed the effectiveness of the proposed method. Although the main fo-
cus of this paper is on the problem of face recognition, the proposed framework
for realistic virtual view generation is quite general. In the future, we would
like to further investigate its performance evaluation not only on other more fa-
cial datasets, but also on databases in other domains such as multi-view object
recognition or view invariant person identification using body images.
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