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Abstract. Obtaining an accurate vehicle position is important for intel-
ligent vehicles in supporting driver safety and comfort. This paper pro-
poses an accurate ego-localization method by matching in-vehicle camera
images to an aerial image. There are two major problems in performing
an accurate matching: (1) image difference between the aerial image and
the in-vehicle camera image due to view-point and illumination condi-
tions, and (2) occlusions in the in-vehicle camera image. To solve the
first problem, we use the SURF image descriptor, which achieves robust
feature-point matching for the various image differences. Additionally,
we extract appropriate feature-points from each road-marking region on
the road plane in both images. For the second problem, we utilize se-
quential multiple in-vehicle camera frames in the matching. The exper-
imental results demonstrate that the proposed method improves both
ego-localization accuracy and stability.

1 Introduction

The vehicle ego-localization task is one of the most important technologies for In-
telligent Transport Systems (ITS). Obtaining an accurate vehicle position is the
first-step to supporting driver safety and comfort. In particular, ego-localization
near intersections is important for avoiding traffic accidents. Recently, in-vehicle
cameras for the ego-localization have been put to practical use. Meanwhile, aerial
images have become readily available, for example from Google Maps [1]. In light
of the above, we propose a method for accurate ego-localization by matching the
shared region taken in in-vehicle camera images to an aerial image.

A global positioning system (GPS) is generally used to estimate a global
vehicle position. However, standard GPSs for a vehicle navigation system have
an estimation error within about 30–100 meters in an urban area. Therefore,
a relatively accurate position is estimated by matching information, such as
a geo-location and an image taken from a vehicle, to a map. Among them,
map-matching [2] is one of the most prevalent methods. This method estimates
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Fig. 1. Vehicle ego-localization by matching in-vehicle camera image to an aerial image:
Shaded regions in both images correspond.

a vehicle position by matching a vehicle’s driving trajectory calculated from
rough estimations using GPS to a topological road map. Recently, in-vehicle
cameras have been widely used; therefore, vehicle ego-localization using cameras
has been proposed [3–5]. This camera-based vehicle ego-localization matches in-
vehicle camera images to a map, which is also constructed from in-vehicle camera
images. In many cases, the map is constructed by averaging in-vehicle camera
images with less-accurate geo-locations. Therefore, it is difficult to construct a
globally consistent map.

In contrast, aerial images that covers a wide region and with a highly accurate
geo-location have also become easily available, and we can collect them at low-
cost. There are some methods that ego-localize an aircraft by matching aerial
images [6, 7]. However, the proposed method estimates a vehicle position. The
proposed method matching the shared road-region of in-vehicle camera images
and an aerial image is shown in Figure 1. Pink et al. [8] have also proposed an
ego-localization method based on this idea. They estimate a vehicle position by
matching feature-points extracted from an aerial image and an in-vehicle camera
image. An Iterative Closest Point (ICP) method is used for this matching. As
feature-points, the centroids of road markings, which are traffic symbols printed
on roads, are used. This method, however, has a weakness in that a matching
error occurs in the case where the images differ due to illumination conditions
and/or occlusion. This decreases ego-localization accuracy.

There are two main problems to be solved to achieve accurate ego-localization
using in-vehicle camera images and an aerial image. We describe these problems
and our approaches to solve them.

1) Image difference between the aerial image and the in-vehicle cam-
era image: The aerial image and the in-vehicle camera image have large
difference due to viewpoints, illumination conditions and so on. This causes
difficulty in feature-point matching. Therefore, we use the Speed Up Robust
Feature (SURF) image descriptor [9]. The SURF image descriptor is robust
for such differences of view and illumination. Additionally, since the road-
plane region in the images has a simple texture, the feature-points extracted
by a general method tend to be too few and inappropriate for the matching.
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Fig. 2. Feature-point map: White dots represent feature-points.

Therefore, we extract feature-points appropriate for the matching from each
road-marking region.

2) Occlusion in the in-vehicle camera image: In a real traffic environment,
forward vehicles often exist. They occlude the road-markings in the in-vehicle
camera image, and thus matching to an aerial image fails. However, even if
the feature-points are occluded in some frames, they may be visible in other
frames. Therefore, we integrate multiple in-vehicle camera frames to extract
feature-points, including even those occluded in specific frames.

Based on the above approaches, we propose a method for vehicle ego-localization
by matching in-vehicle camera images to an aerial image. The proposed method
consists of two stages. The first stage constructs a map by extracting feature-
points from an aerial image, which is performed offline. The second stage ego-
localizes by matching in-vehicle camera images to the map.

This paper is organized as follows: Section 2 proposes a method of map
construction from an aerial image, and Section 3 proposes a method of ego-
localization by matching in-vehicle camera images to the map, in real time.
Experimental results are presented in Section 4, and discussed in Section 5.
Section 6 summarizes this paper.

2 Construction of Feature-points Map for Ego-localization

A feature-points map is constructed from an aerial image for the ego-localization.
To adequately extract the applicable feature-points, we first extract road-marking
regions and then extract the unique feature-points from each region. We then
construct a map for the ego-localization using SURF descriptors [9], which are
robust against the image difference between the aerial image and the in-vehicle
camera image. Figure 2 shows a feature-point map constructed from the aerial
image. In this paper, the road region of the intended sequences is manually
extracted in advance to evaluate the proposed method. We will automatically
extract the region by a segmentation method in future work.

The map construction process is divided into the following steps:
1. Emphasize road markings by binarizing an aerial image, then split it into

multiple regions by a labeling method.
2. Eliminate the regions considering appropriate road-marking size.
3. Extract feature-points xn(n = 1, . . . , N) from the road-marking regions in

the binary image by Harris corner detector.
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(a) (b) (c)

Fig. 3. Overview of the proposed method: (a) Correspondence of a projected image
and the region in aerial image. (b) Estimation of the current corresponding region. (c)
Estimation of an accurate corresponding region.

4. Calculate the SURF descriptor fn around xn from the aerial image.
The feature-point map is represented as the pairs of the position and the SURF
descriptor {(x1, f1), . . . , (xN , fN )}. In this paper, we treat objects on the road
such as vehicles and trees as well as road markings, though the detection of these
objects is required in a fully developed system.

3 Ego-localization by Matching the In-vehicle Camera
Images to the Map

3.1 Overview

Vehicle ego-localization is achieved by sequentially matching in-vehicle camera
images to a map constructed from an aerial image. The proposed method ego-
localizes a vehicle at time step t (frame) by the following steps:

1. Transformation of an in-vehicle camera image to a projected image
2. Sequential matching between projected images
3. Matching of the projected image to the map using multiple frames
4. Estimation of the vehicle position

The proposed method first transforms the in-vehicle camera image to a projected
image to simplify the matching process. Then, the proposed method finds a
region Rt in the map that corresponds to the in-vehicle camera image as shown
in Figure 3(a). The homography matrix At in this figure transforms the projected
image on Rt. Then, we estimate the vehicle position pt as

pt = Atq, (1)

where q is the vehicle position in the projected image, as shown in Figure 4(b)
and Figure 3(a), obtained from the in-vehicle camera parameters.

The proposed method updates At by the two-step estimation shown in Fig-
ure 3(b) and Figure 3(c). At is then updated as

At = ΣtAt−1Mt. (2)

Mt and Σ are the homography matrices. Mt transforms the projected image
to the estimated corresponding region R̂t from the previous frame as shown in
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(a) In-vehicle camera image. (b) Projected image.

Fig. 4. Transformation of an in-vehicle camera image to a projected image: the shaded
region in (a) is transformed to the projected image (b).

Figure 3(b). Then, Mt is estimated by the sequential matching between projected
images. The estimated region, however, contains some error due to the matching
error Σt, which transforms the estimated region to an accurate corresponding
region Rt as shown in Figure 3(c). Therefore, Σt is estimated by the matching
of the projected image to the map. In this matching, multiple in-vehicle camera
frames are used to improve the matching accuracy. This aims to increase the
number of feature-points and to perform accurate matching in a situation where
part of the road markings are occluded in the in-vehicle camera images. We
detail the ego-localization process below.

3.2 Transformation of an In-vehicle Camera Image to a Projected
Image

An in-vehicle camera image is transformed to a projected image as shown in
Figure 4. To transform the projected image, a 3× 3 homography matrix is used.
The matrix is calculated in advance from the in-vehicle camera parameters:
installed position, depression angle and focal length. The vehicle position q in a
projected image is also obtained using the matrix.

3.3 Sequential Matching between Projected Images

To estimate R̂t, the proposed method performs the matching between sequential
projected images. The projected image at t is represented as It. Mt, shown in
Figure 3(b), is obtained by matching between the feature-points in It−1 and It.

The feature-points are extracted by Harris corner detector, then matched
by Lucas-Kanade’s method. Figure 5(a) shows the initial correspondence be-
tween the feature-points. Mt is calculated by minimizing the LMedS criterion
by selecting the correspondences. R̂t is calculated from Mt and At−1.

3.4 Matching of the Projected Image to the Feature-points Map
using Multiple Frames

R̂t contains some error, which is represented as a homography matrix Σt shown
in Figure 3(c). We calculate Σt by matching the projected image to the map
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(a) Sequential matching be-
tween projected images.

(b) Matching the projected im-
age to the feature-points map.

Fig. 5. Two step matching (Corresponding feature-point pairs in the projected images:
The dots represent the feature-point in each image and the lines show their correspon-
dence).

to obtain the accurate corresponding region Rt. In this matching, in order to
improve the accuracy and stability in a situation where occlusions occur in the
in-vehicle camera image, multiple in-vehicle camera frames are used. We first
explain a matching method the only uses a single frame, and then how to extend
it to that uses multiple frames.

Matching using a Single Frame We extract the feature-points from the pro-
jected images in the same manner as described in Section 2. The position of a
feature-point extracted from It is represented as yt,lt(lt = {1, . . . , Lt}), where
Lt is the number of feature-points. The SURF descriptor of yt,lt is represented as
gt,lt . Thus, the feature-points could be represented as {(yt,1,gt,1), . . . , (yt,Lt ,gt,Lt)}.

For the matching, each feature-point position yt,lt is transformed to y′
t,lt

in
the map as

y′
t,lt = At−1Mtyt,lt . (3)

Feature-point pairs are chosen so that they meet the following conditions:{
||y′

t,lt
− xn|| < r

min
lt

||gt,lt − fn|| , (4)

where r is the detection radius. Figure 5(b) shows the feature-point pairs. Then,
Σt is obtained by minimizing the LMedS criterion by selecting the correspon-
dences.

Matching using Multiple Frames To achieve accurate matching in a situa-
tion where occlusions occur in some in-vehicle camera images, we integrate the
feature-points in the multiple in-vehicle camera frames. The feature-points at
t′ are represented as Yt′ = {yt′,1, . . . ,yt′,Lt′}. They are transformed to Y ′

t′ =
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Table 1. Dataset

Aerial image In-vehicle camera image

Set No. Length (m) Occlusion Occlusion Time

1 85 small small day
2 100 small small night
3 100 small large day
4 75 large large day

{y′
t′,1, . . . ,y

′
t′,Lt′

} in the map coordinate. y′
t′,1 is transformed as

y′
t′,lt′

=
{

At′−1Mt′yt′,lt′ t′ is current frame
At′yt′,lt′ otherwise . (5)

Then, the feature-points in the F multiple frames including the current frame
are used for the matching. Then, we obtain Σt in the same manner as in the
case of a single frame.

3.5 Estimation of the Vehicle Position

Finally, At is calculated by Equation 2, and the vehicle position pt is estimated
by Equation 1. As for the matrix A0 at the initial frame, it is obtained by a
global matching method in the map without the estimation of R̂0

4 Experiment

4.1 Setup

We mounted a camera, a standard GPS and a high accurate positioning system
(Applanix, POSLV) [10] on a vehicle. The standard GPS contains an error of
about 5–30 meters, which was used for the initial frame matching. The high-
accuracy positioning system was used to obtain the reference values of vehicle
positions. We used four sets of an aerial image and an in-vehicle camera image
sequence with different capturing conditions. Table 1 shows the specification of
the datasets and Figure 6 shows examples. The resolution of the aerial image
was 0.15 meters per pixel. The resolution of the in-vehicle camera image was
640 × 480 pixels, and its frame-rate was 10 fps. Occlusions in the aerial image
occurred due to vehicles, trees and so on. Occlusions in the road regions in an
aerial image occurred due to vehicles, trees and so on. We defined a road segment
in an aerial image which was occluded less than 10% as a small occlusion, and
that occluded more than 50% as a large occlusion by visual judgment. Occlusions
in the in-vehicle camera images were due to forward vehicles.

4.2 Evaluation

We evaluated the ego-localization accuracy by the Estimation Error and the
Possible Ratio defined by the following equations:

Estimation error =
The sum of estimation errors in available frames

The number of available frames
, (6)
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Fig. 6. Datasets: Four sets of an aerial image and an in-vehicle camera image sequences.

Possible ratio =
The number of available frames

The number of all frames
. (7)

The Estimation Error is the average error between the estimated vehicle position
and the reference value. On the other hand, the Possible Ratio represents the
stability of the estimation. So, we use available frames in which the estimation
was achieved successfully to calculate the Estimation Error. The available frames
were checked by the size and twisting of the corresponding region, which was
transformed from the projected image to the aerial image. When the Possible
Ratio was less than 0.50, we did not calculate the Estimation Error.

In this experiment, we compared the ego-localization accuracy between the
proposed method and a method based on [8]. The comparative method used
only the center position of road markings as the feature-point, then performed
the matching of these feature-points to the map using the ICP method. In this
matching, the comparative method used only a single in-vehicle camera frame.
On the other hand, the proposed method used five frames selected from frames
for the previous five seconds with the same interval.

4.3 Initial Estimation

For the initial estimation, we performed matching between a projected image
and a circular region in an aerial image with the radius of 30 meters around the
location measured by a standard GPS. In cases where the estimation failed in
the frame, we also performed this initial estimation in the next frame.
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Table 2. Experimental result.

Proposed Compared

Set No. Error (m) Possible Ratio Error (m) Possible Ratio

1 0.60 1.00 0.72 0.83
2 0.70 1.00 0.75 0.90
3 0.98 0.73 N/A 0.30
4 N/A 0.12 N/A 0.04

4.4 Experimental Result

Table 2 shows the ego-localization accuracy. Each row shows the Estimation
Error and the Possible Ratio of each dataset. We confirmed from this result that
the proposed method improved the accuracy for all datasets compared with the
comparative method. In the case of Dataset 1 with small occlusion in both the
in-vehicle camera image sequence and the aerial image, the Estimation Error
was 0.60 meters by the proposed method. Furthermore, the Possible Ratio 1.00
was achieved by the proposed method, compared to 0.83 by the comparative
method. Thus, we also confirmed the high stability of the proposed method. In
the case of Dataset 2 with the in-vehicle camera image sequence taken at night,
the Estimation Error and the Possible Ratio also improved.

In the case of Dataset 3 with a large occlusion in the in-vehicle camera image
sequence, an Estimation Error of 0.98 and Possible Ratio of 0.73 were achieved
by the proposed method. In contrast, a Possible Ratio of only 0.30 was achieved
by the comparative method, and the Estimation Error was not available because
the possible rate was less than 0.50. Finally, in the case of Dataset 4, there was
a large occlusion in the aerial image, and ego-localization by both methods was
not available in most frames due to mismatching of the feature-points.

The estimation of the proposed method consumed about 0.6 (sec) per frame
when we used a computer whose CPU was Intel(R) Core(TM) i7 860 2.80GHz.

5 Discussion

1) Image Difference between the Aerial Image and the In-vehicle
Camera Image: For matching the in-vehicle camera image to the aerial
image, we extracted unique feature-points from road markings, and used
the SURF descriptor. From the results of Datasets 1 and 2, the proposed
method improved the Estimation Error and the Possible Ratio. The results
demonstrated that the proposed method could make the matching robust
for the image difference between the images.

2) Occlusion in the In-vehicle Camera Image: The feature-points ex-
tracted from the in-vehicle camera image were occluded in some frames. How-
ever, they were not occluded in other frames. From the result of Dataset 3,
we confirmed that the matching using the multiple frames in the proposed
method worked well in such situations. In this experiment, we fixed the num-
ber of frames used for the matching. We consider that adapting the number
to the changes of occlusions could further improve the performance.
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3) Limitation of the Proposed Method: From the result of Dataset 4, the
proposed method could not estimate accurately the vehicle position when a
large occlusion existed in the aerial image. To solve this problem, we need
to construct a map without occlusions. In future work, we will detect the
occluded regions and interpolate them by using in-vehicle camera images.

6 Conclusion

We proposed a vehicle ego-localization method using in-vehicle camera images
and an aerial image. There are two major problems in performing accurate
matching: the image difference between the aerial image and the in-vehicle cam-
era image due to view-points and illumination conditions; and occlusions in
the in-vehicle camera image. To solve these problems, we improved the feature-
point detector and the image descriptor. Additionally, we extracted appropriate
feature-points from each road marking region on the road plane in both images,
and utilized sequential multiple in-vehicle camera frames in the matching. The
experimental results demonstrated that the proposed method improves both the
ego-localization accuracy and the stability. Future work includes construction of
a feature-points map without occlusions by using in-vehicle camera images.
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