カメラとジャイロセンサを組み合わせた

移動ロボットの高精度な姿勢推定

小堀 訓成† 出口 大輔† 高橋 友和‡ 井手 一郎† 村瀬 洋†

⁺名古屋大学大学院大学院 情報科学研究科 〒464-8601 愛知県名古屋市千種区不老町 ⁺岐阜聖徳学園大学 経済情報学部 〒500-8288 岐阜県岐阜市中鶉 1-38

E-mail: † {kobo, ddeguchi, ide, murase}@ murase.m.is.nagoya-u.ac.jp, ‡ ttakahashi@gifu.shotoku.ac.jp

あらまし 移動ロボットや自動車への実用化に向けた高精度な位置・姿勢センサとして,安価な単眼カメラと汎用のジャイロセンサおよび加速度センサを一体化したハイブリッドなシステムを提案する.ジャイロセンサおよび加速度センサ(以降,これらを慣性センサと呼ぶ)を用いて位置・姿勢の算出を行う場合,温度などの影響によりドリフト誤差が発生するため,時間経過に対して精度が劣化してしまう.一方,カメラ画像を用いた位置・姿勢推定手法もあるが,ドリフト誤差がない反面,オクルージョンが発生するため継続的に位置・姿勢を算出することは難しい.提案手法は,慣性センサとカメラ画像をカルマンフィルタの枠組みで組み合わせることにより,上記センサの各々が持つ問題の解決を図るものである.具体的には,SIFT特徴量を利用し,モーションステレオによって回転行列・並進ベクトルを算出し,その情報を参照値として慣性センサの誤差を推定する.提案手法による姿勢の精度向上については,実験によりその有効性を示すことができた.

キーワードSIFT, エピポーラ幾何, カルマンフィルタ, ジャイロセンサ, 加速度センサ

High Accuracy Pose Estimation for a Mobile Robot

fusing a Camera and Gyro Sensors

Norimasa KOBORI[†] Daisuke DEGUCHI[†] Tomokazu TAKAHASHI[‡]

Ichiro IDE[†] and Hiroshi MURASE[†]

† Graduate School of Information Science, Nagoya University Furo-cho Chikusa-ku Nagoya, Aichi 464-8601 Japan
 ‡ Faculty of Economics and Information, Gifu Shotoku Gakuen University 1-38 Nakauzura, Gifu, Gifu, 500-8288 Japan

Abstract In this paper, we propose a hybrid system which combines an inexpensive camera with gyro and acceleration sensors for precise position and rotation estimations. When only gyro and acceleration sensors are used, it is known that drift error occurs with time. On the other hand, when only a camera is used, the drift error does not occur, but it is difficult to continuously obtain the position and rotation due to occlusions. Therefore, we propose the combination of the gyro/acceleration sensors and the camera by the Kalman Filter to solve each sensor's problem. In concrete terms, using the SIFT-features, rotation and translation vectors are calculated by the motion stereo method. Next, the errors of gyro and acceleration sensors are corrected referring to the rotation matrix and the translation vectors which are obtained from the camera-captured image information. Experimental results showed the effectiveness of our method.

Keyword SIFT, epipolar-equation, Kalman Filter, gyro sensor, acceleration sensor

1.はじめに

自動車や航空機,ロボットなどの移動体において自ら の位置や姿勢を知ることは重要である.自動車では,位 置はカーナビゲーションシステムに利用され,姿勢は横 滑り安定装置(VSC)や統合車両姿勢安定制御システム (VDIM)などの運動制御に利用されている[1].位置と 姿勢の算出方法は用途や使用するセンサに応じていくつ かの手法がある.それらの代表的なものを表1にまとめる.高精度な位置・姿勢を求めるには,センサコストが 大きくかかってしまう.例えば,RTKGPSの場合,基準 局を設置する必要があり,基準局から半径5km以内でな いと十分な精度が出ない.また基準局との通信も要する. 光ファイバジャイロは,光ファイバを巻く作業が製造工 程上,量産には向かない.レーザレンジファインダも反

使用するセンサ	手 法	用途	精度
GPS	GPS	車載加-北	10m 程度
(単独測位/補正情報有)	(२१७७ २१७४७)	(位量/方位算出)	
GPS (RTKGPS) 光ファイバジャイロ サーボ加速度センサ	GPS/INS (111777117)	航空機用北 (位置/姿勢算出)	約0.1m以下 約3.0deg以下
レーザーレンジファインダ	SLAM	口ボット用ナビ	約0.1m以下
環境地図	(パーティクルフィルが等)	(位量/方位算出)	約3.0deg以下

表1 高精度な位置と姿勢の算出方法

射光を計測するための ADC が GHz のサンプリングを要 し, ADC やレンズの部品単価が高い. さらにレンズ表面 の研磨やレンズを回転させるモータ部と光軸を合わせる 作業などには手作業が入るため, こちらも量産には向か ない. コスト構造の異なる航空機産業を除いてはいずれ も製品/実用化の点でまだ敷居が高い.

一方,低コストで位置・姿勢を求める方法としては, (1)振動型などのジャイロ,加速度センサを用いる方法 と(2)カメラ画像を用いる方法がある.(1)の場合,温 度などの影響でドリフト誤差は発生し,時間経過に対し て誤差が蓄積してしまう.また(2)の場合,ドリフト誤 差が小さい反面,オクルージョンの影響により継続的に 位置・姿勢を求めることは難しい.

先行研究を例にみると, 関らはモーションステレオに よる時刻間での路面の対応付けを Lucas-Kanade 勾配法を 用いて行い,車両の移動量を推定した[3].さらに,エボ リューショナルロボティクス社によって,VSLAM(Visual Simultaneous Localization And Mapping)という手法が製品 化されている.これは,画像から求めた特徴点から環境 地図を構成しておき,以降,獲得された特徴点から自己 位置を推定する[4].いずれも画像から特徴となる対象点 を求め,エピポーラ幾何の枠組みで位置・姿勢を求める ものであるが, 欠点はロバスト性にあり, 移動障害物な どが存在する動的環境下では,特徴点の算出や特徴点の 対応付けが安定して出来ない.一方,前山らはあらかじ め認識しやすい色ランドマークを作成しておき,デッド レコニングで推定した自己位置をカルマンフィルタの枠 組みで修正した[2].[2]の手法は,内界センサの推定値を ベースにカメラ画像からランドマークを検出した時のみ 補正するハイブリッドな機構であるため,ロバスト性の 観点では参考にできるが,事前にランドマークを用意し ておく煩わしさがある.

本研究では,実用化に向けた高精度な位置・姿勢セン サとして,安価な単眼カメラと汎用の慣性センサを一体 化したシステムを提案し,個々のセンサでの課題の解決 を図る.具体的には,画像から求めた回転行列・並進ベ クトルを参照値として,慣性センサの誤差をカルマンフ ィルタの枠組みで推定する.画像から回転行列・並進べ クトルを算出する際には,画像の回転・拡小・拡大・照 明の変化に頑健な SIFT(Scale-Invariant Feature Transform) 特徴量[5]とモーションステレオを利用する.提案するシ ステムは,ビジョンと慣性センサとのハイブリッドな構 成であるため,移動障害物などの影響で画像から回転行 列・並進ベクトルが求まらなくても位置・姿勢の算出が 可能である.また慣性センサのドリフト誤差を逐次推定 するため,長時間経過後の蓄積誤差の低減が図れる.さ らに,画像処理上の観点から,慣性センサから求まる回 転行列・並進ベクトルの情報を画像処理側に渡すことに よって,画像処理の計算負荷や特徴点の対応付けのミス マッチを容易に減らすことができる.以下,2章には提 案するアルゴリズムを,3章には実験を,4章ではまとめ と今後の課題を述べる.

2. カメラとジャイロの融合による高精度姿勢推定

提案する手法のブロック図を図1に示す.SIFT 特徴量 を利用して時刻の異なる画像間の対応付けを行い,モー ションステレオの原理より回転行列 \mathbf{R}_{ing} と並進ベクトル \mathbf{h}_{ing} を算出する. \mathbf{R}_{ing} と \mathbf{h}_{ing} を観測量とし,状態量をジ ャイロセンサ,加速度センサの誤差 $\delta \mathbf{\omega}$, $\delta \mathbf{g}$ としてカ ルマンフィルタによって誤差を推定する.推定した誤差 をセンサ値から取り除くことにより姿勢・位置の精度を 向上させる.以下,画像処理による観測量の導出とカル マンフィルタによる誤差の推定の2部構成で説明する.

2.1. 画像処理による観測量の導出

画像情報から回転行列・並進ベクトルを精度良く求め るために,SIFT 特徴量とモーションステレオの組み合わ せを提案する.このとき,慣性センサからの出力を利用 することにより,安定した回転・並進量の算出を実現す ることが提案手法のポイントである.Lowe によって提 案されたSIFT[5]は,画像の拡大・縮小,回転などの変化 に頑健な特徴量の抽出法である.微小なアフィン変換に 対しても比較的ロバストであるとの報告もある[5].その

ため,提案手法では時刻の異なる画像間の対応付けに SIFT 特徴量を用いる.画像間の時間間隔が微小であれば, 画像間の変化量も微小なアフィン変換で表現できる.具 体的な手順は,SIFT 特徴量の検出と,以下4つの処理, (1)特徴点のマッチング(2)慣性センサを利用した誤 対応の除去(3)停止判定処理(4)基礎行列の算出,か ら構成される.

(1)特徴点のマッチング

まず時刻の異なる画像間で特徴点のマッチングを行う. マッチングは,SIFT 特徴量の最近傍探索処理によって行う.特徴間の類似度を表す尺度として,特徴空間中での距離を用い,距離が最小になるものからマッチングの候補とする.高次元ベクトルでの特徴量の探索は複雑であるが,k-d木探索[6]を基にしたBest-Bin-First (BBF)アルゴリズム[7]を用いることにより,効率的に精度よく最近傍の対応点を見つけることができる.BBF はk-d木によって探索空間の分割を行い,隣り合う空間の中で検索特徴量に近い空間を優先して検索することで近似的に類似の特徴ベクトルを見つけ出す方法である.

(2) 慣性センサを利用した誤対応の除去

SIFT 特徴量の対応付けと誤対応の一例を図 2 に示す. マッチングは特徴量空間中での距離を見ているため,特 徴点によっては実際の 3 次元空間中では大きく異なった 対応が発生してしまう.そこで,このような誤対応を除 去するため,慣性センサを利用する.具体的にはまず, ジャイロ・加速度センサの測定値を座標変換・積分処理 することで回転行列・並進ベクトル \mathbf{R}_{ins} , \mathbf{h}_{ins} を求める. 時刻 t+1 の特徴量を \mathbf{R}_{ins} と \mathbf{h}_{ins} より時刻 t の画像に射影す る.射影された点の N pixel 四方以内(N=20)に時刻 t の画像の特徴点があれば対応点として利用する.それ以 外は,誤対応として対応点群から削除する.この方法は, 処理負荷が軽い上,容易に実装できる点で良い.

図2 SIFT の対応付けと誤対応の例

(3)停止判定処理

図3に空間の注視点と時刻t,t+1の画像上の特徴点間 の幾何学関係を示す.時刻間で車両が回転・並進の動作 することでエピポーラ平面(各時刻のレンズ中心と空間 の注視点を結んだ三角形)が構成される.回転・並進の 移動量は画像間のF行列(fundamental matrix)を求める ことで算出できるが,動作がない場合は三角形が構成さ れない.その場合は適切なF行列が求まらない.そこで F行列算出の前に前処理として停止判定を行い,停止と 判定された場合はF行列を求めないようにする.停止判 定では,時刻t,t+1の対応付けされた画像上での特徴点 位置を比較し,そのノルムを計算する.そして,全特徴 点のノルムの平均値が,1.0 pixel以下であれば停止と判 定する.

(4) 基礎行列の算出

時刻 t とt+1 のカメラ座標系の関係式は以下のエピポー ラ方程式で記述される.ここで **x** と **x**' は時刻 t, t+1 でのカメラ座標系における3次元座標である.

$$\mathbf{x}^{\mathrm{T}}\mathbf{E}\mathbf{x}' = \mathbf{m}^{\mathrm{T}}\mathbf{F}\mathbf{m}' = 0 \qquad (1)$$

$$\mathbf{F} = \mathbf{A}^{-\mathbf{T}} \mathbf{E} (\mathbf{A}')^{-1}$$
(2)

A はカメラの内部行列である.F の算出方法には最小 自乗法の枠組みによる解析的算出法と最急勾配法による 逐次計算がある[8].前者の場合は多段階的に固有値計算 が入るため数値計算誤差が入り,並進量が小さいと精度 良く求まらない.そこで今回は後者の最急勾配法を利用 する.評価関数は特徴点と対応するエピポーラ線までの ユークリッド距離の自乗和として式(3)で計算する.Fの 初期値は,ジャイロ・加速度センサから求めた R_{ins} h_{ins}と する.こうすることで安定した精度の保持と計算時間の 短縮ができる.

$$\mathbf{C} = \sum_{i} \left[\frac{(\mathbf{m}_{i}^{\mathrm{T}} \mathbf{F} \mathbf{m}_{i}^{\prime})^{2}}{\mathbf{l}_{i}^{2} + \mathbf{l}_{2}^{2}} + \frac{(\mathbf{m}_{i}^{\mathrm{T}} \mathbf{F} \mathbf{m}_{i}^{\prime})^{2}}{\mathbf{l}_{i}^{\prime 2} + \mathbf{l}_{2}^{\prime 2}} \right]$$
(3)
$$\mathbf{l}_{i} = \mathbf{F} \mathbf{m}_{i}^{\prime} \qquad \mathbf{l}_{i}^{\prime} = \mathbf{F}^{\mathrm{T}} \mathbf{m}_{i}$$

また,使用する特徴点は画像の中心から万遍なく分布 している方が安定した精度が出る.そこで,VGA 画像を

図3 時刻間のカメラと注視点の関係

4×3 等分し,1 つの区画から決まった回数の乱数を発生 させて,特徴点の数を限定する.さらにF行列は中心射 影の場合にランクが2 であることから,最急勾配法で式 (3)の評価値Cが閾値(0.01)以下の場合,1000回の計算 ごとに1度,以下の特異値分解によって近似を施す.こ れにより計算の高速化が図られる(Intel Pentium M 1.2GHz で 36.7msec).

$$\hat{\mathbf{F}} = \mathbf{V}\hat{\boldsymbol{\Sigma}}\mathbf{U}^{\mathrm{T}}$$
(4)
$$\hat{\boldsymbol{\Sigma}} = \operatorname{diag}(\sigma_1, \sigma_2, 0)$$
(5)

最急勾配法を用いる利点はもう1つある.それは式(3) によるF行列の評価がしやすい点である.計算に使用す る特徴点が移動障害物上にあった場合,F行列は正確に 求まらない.そこで閾値(0.005)以下の場合のみ回転行 列・並進ベクトルを以下の式により算出する.

$$\mathbf{E} = \mathbf{h}_{\rm img} \times \mathbf{R}_{\rm img} \tag{6}$$

ただし,a×B は B の各列ベクトルと a の外積を並べた 行列を算出する演算である.停止判定処理や式(3)による 精度判定があるため,毎時刻画像より回転・並進量が求 まる訳ではない.しかし,慣性センサとのハイブリッド な構成のため問題はなく,断続的に画像から回転・並進 量が求まれば慣性センサの誤差を推定することができる.

2.2. カルマンフィルタによる誤差の推定

ジャイロ・加速度センサの値を「真値+誤差」の形で分 け,誤差量 , gを状態量 x(6次元)として推定す る.センサ値として計測するのは,式(7)に示す ,g で ある.慣性センサの誤差は,高周波な成分と低周波な成 分に分けられる.一般的に,誤差の高周波成分はLPF(ロ ーパスフィルタ)によって除去可能であるが,温度など の環境に依存した時間変化に対して比較的緩やかな誤差 (低周波成分)は除去できない.提案手法では,画像情 報からカルマンフィルタによって慣性センサの誤差(主 に,除去の困難な低周波成分)の推定を狙う.

(1) 観測方程式

観測方程式は,画像から求めた R_{img} と h_{img} の各要素を 観測量 s(12 次元)とし, s が慣性センサで求めた R_{ins}と h_{ins} の各要素と等しいという拘束条件で設計する.慣性 センサで時刻 t+1 から時刻 t への回転座標変換は以下に従う.

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \mathbf{R}_{ins} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix} = \mathbf{R}_{y} \cdot \mathbf{R}_{p} \cdot \mathbf{R}_{r} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix}$$
(8)

$$\mathbf{R}_{y} = \begin{pmatrix} \cos(w_{y}) & -\sin(w_{y}) & 0\\ \sin(w_{y}) & \cos(w_{y}) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{R}_{r} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(w_{r}) & -\sin(w_{r})\\ 0 & \sin(w_{r}) & \cos(w_{r}) \end{pmatrix}$$
$$\mathbf{R}_{p} = \begin{pmatrix} \cos(w_{p}) & 0 & \sin(w_{p})\\ 0 & 1 & 0\\ -\sin(w_{p}) & 0 & \cos(w_{p}) \end{pmatrix}$$
$$\mathbf{C} \subset \mathcal{C} \quad \begin{bmatrix} w_{r}\\ w_{p}\\ w_{v} \end{bmatrix} = \begin{bmatrix} \omega_{roll} - \delta\omega_{roll}\\ \omega_{pitch} - \delta\omega_{pitch}\\ \omega_{vaw} - \delta\omega_{vaw} \end{bmatrix}$$

同様に並進ベクトルについては以下に従う.

$$\mathbf{h}_{\text{ins}} = \mathbf{v}_{\text{body}} \cdot \Delta t + 0.5 \cdot \mathbf{g} \cdot (\Delta t)^2 \tag{9}$$

ここで **v**_{body} は車両の車軸に設定した座標系,オフセット はあるがカメラ座標系と同じと考えて良い.以上より観 測方程式 **O**(**x**,**s**) を 12 次元のベクトル表現を用いて以 下のように表す.

$$\mathbf{O}(\mathbf{x}, \mathbf{s}) \left[\frac{(\mathbf{R}_{ins} - \mathbf{R}_{img}) \mathcal{O} 各要素}{(|\mathbf{h}_{ins}| \cdot \mathbf{h}_{img} - \mathbf{h}_{ins}) \mathcal{O} 各要素} \right] = \mathbf{0} \quad (10)$$

ここで, \mathbf{h}_{img} と \mathbf{h}_{ins} のスケールの正規化に \mathbf{h}_{ins} のノルムを用いる.

(2) 更新則

カルマンフィルタは最尤推定法の枠組みで更新される. 状態量の初期の共分散行列 P_{ko} ,観測量の共分散行列 Q_s のみ事前に決定する.ここで,kは時刻を示す.

$$\mathbf{J}'_{\mathbf{X}} = \partial \mathbf{O}(\mathbf{x}, \mathbf{s}) / \partial \mathbf{x} \quad \mathbf{J}'_{\mathbf{S}} = \partial \mathbf{O}(\mathbf{x}, \mathbf{s}) / \partial \mathbf{s} \tag{11}$$

$$\mathbf{J}_{\mathbf{X}} = \mathbf{Z} \cdot \mathbf{J}'_{\mathbf{X}} \quad \mathbf{J}_{\mathbf{S}} = \mathbf{Z} \cdot \mathbf{J}'_{\mathbf{S}} \tag{12}$$

$$(12)$$

ここで J'_{xm} は J'_{x} の m 行目の行ベクトルである.分散の 融合は , J_{x} を乗じた m 次元空間 (m=12) で行う.

$$\mathbf{P}_{\mathbf{J}_{k}} = \mathbf{J}_{\mathbf{X}} \mathbf{P}_{k} \mathbf{J}_{\mathbf{X}}^{\mathsf{T}} \qquad \mathbf{Q}_{\mathbf{S}}' = \mathbf{J}_{\mathbf{S}} \mathbf{Q}_{\mathbf{S}} \mathbf{J}_{\mathbf{S}}^{\mathsf{T}} \qquad (13)$$

$$\sum_{sfu} = (\mathbf{P}_{Jk}^{-1} + \mathbf{Q}_{s}^{\prime - 1})^{-1}$$
(14)

$$\mathbf{x}_{sfu} = \sum_{sfu} \mathbf{Q}_{s}^{\prime-1}(-\mathbf{O}(\widetilde{\mathbf{x}}, \widetilde{\mathbf{s}}))$$
(15)

ここで∑_{sfn} は融合後の共分散行列, x , s は状態量の推定 値,観測量の実測値である.上記を元の空間に戻すと, 状態量の共分散行列と状態量の更新式は以下の形になる.

$$\sum_{\text{estk}} = (\mathbf{J}_{\mathbf{X}}^{\mathrm{T}} \mathbf{J}_{\mathbf{X}})^{-1} \mathbf{J}_{\mathbf{X}}^{\mathrm{T}} \sum_{\text{sfu}} \mathbf{J}_{\mathbf{X}} (\mathbf{J}_{\mathbf{X}}^{\mathrm{T}} \mathbf{J}_{\mathbf{X}})^{-1}$$
(16)

$$\mathbf{x}_{\text{estk}} = \widetilde{\mathbf{x}}_{k} + (\mathbf{J}_{\mathbf{X}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}})^{-1} \mathbf{J}_{\mathbf{X}}^{\mathsf{T}} \mathbf{x}_{\text{sfu}}$$
(17)

(3)状態方程式

推定された状態量は次ステップ(k+1)の推定量として そのまま利用する.また分散は,その方向性を維持し係 数をかけた形で引き継がれる.B は対角行列でチューニ ングパラメータである.この値と観測量の分散値 Q_sの 大小の バランスで精度が変わる.

$$\mathbf{x}_{k+1} = \mathbf{x}_{estk}$$
(18)
$$\sum_{k+1} = \mathbf{B} \cdot \sum_{estk}$$
(19)

(4)出力

システムとしての出力は,位置・姿勢である.センサ の測定値から式(17)で推定した誤差を引き,ジャイロセ ンサ値を積算したものが姿勢,姿勢を考慮して加速度セ ンサ値を2回積分したものが位置となる(図1参照).

3. 実験

車両の上にジャイロ・加速度センサ (SMG074/225), また,評価用に光ファイバジャイロ(FOG)・サーボ加速 度計 (JM3403/JA-5VC4)を搭載し,カメラを組み付け, 1500mm/s 以下の移動速度で走行,10Hz の周期で計測し た.ここで,加速度・ジャイロセンサの座標系は,進行 方向が X,右に Y,下に Z 軸をとり,各々の右回りを正 としてロール,ピッチ,ヨーとした.さらにカメラの光 軸は X 軸と一致するように配置した.

FOG・サーボ加速度計の値を真値として,提案手法に よって慣性センサ(SMG074/225)の誤差が補正できるか を確認した.各々のセンサの精度スペックは表2に示す. また今回はデータを計測後,オフラインにて検証をした. まず,提案手法の効果検証としてカルマンフィルタによ る誤差推定結果について述べる.次に,画像からの並進 ベクトルの算出結果とカーブ走行時の影響について考察 する.

3.1. カルマンフィルタによる誤差推定結果

画像からの求めた回転行列を観測値としてカルマンフ ィルタによってジャイロの誤差を推定した姿勢算出結果 を図4~6に示す.いずれの場合もSMG(汎用のジャイ ロセンサ)よりも提案手法がFOG(真値)に近いことか ら提案手法による精度の改善が確認できた.表3に提案

	ジャイロセンサ	加速度センサ	FOG	サーボ加速度計
製造元	Bosch社	Bosch社	日本航空電子工業	日本航空電子工業
製品名	SMG074	SMG225(±5G)	JM3403	JA-5VC4
ドリフト/ バイアス	0.25 °/s (平均) ±1.0 °/s (最大)	0.0g (平均) ±0.1g (最大)	3(°/h)	$\pm 686.7 \times 10^{-6}$
温度依存	±1.25 ° /s	±0.03g		(11/5)/
経年変化	±1.7 ° /s	±0.02g	-	-
直線性	±0.5°/s	±0.02g	±0.5% FS	0.01% FS
分解能	175 LSB/(°/s)	6667 LSB/g	0.019(°/s)	$9.81 \times 10^{-6} (m/s^2)$
応答周波数	Cut off 57Hz	Cut off 57Hz	DC ~ 200Hz	DC ~ 200Hz
備考	静電容量振動式 (クローズド型)	静電容量式 2軸1チップ	経年変化なし	経年変化なし

表2 慣性センサの精度仕様

表3 姿勢精度(平均誤差)の比較

1000フレーム間の 平均誤差(deg)	yaw	roll	pitch
従来手法(ジャイロのみ)	8.90	7.98	15.01
提案手法	4.13	5.56	3.59

手法によって測定された姿勢精度と汎用ジャイロのみ によって測定された姿勢精度をヨー,ロール,ピッチ それぞれに対する平均誤差として示す.提案手法では, いずれの軸も1000フレーム間(100sec)での時間平均 にして姿勢を3~6度の範囲である.また最大誤差とし

0~400 フレーム間の周波数解析結果

ても約10度以内におさえている.特に,ピッチ方向について大幅な改善が見られた.また,図4~6において,「画像」は画像から算出した姿勢であり,停止やF行列の精度判定で算出できなかった場合は,ジャイロ(SMG)の値で繋いだ結果である.特にヨー方向は,FOGと一致している.この点から画像から求めた回転量が正しいと判断できる.

誤差には,温度などの要因によって徐々にずれていく もの(低周波成分)と振動などで一時的に発生するもの (高周波成分)に分けられる.図4,6のヨー角とピッチ 角では,SMG(汎用ジャイロ)の値に注目すると緩い傾 斜でずれていくことが良く分かる.これは,時間変化に 比較的緩やかな直流成分型のドリフト誤差に該当する. 式(17)では,高周波・低周波成分の両方を推定する.カ ルマンフィルタを用いなくても誤差の高周波成分であれ ばLPF(ローパスフィルタ)でカットできる.一方,低 周波成分は静止時に誤差量を検出して,オフセットとし て常時,計測値から引く方法がある.しかし,温度など の要因によって誤差の低周波成分にも緩やかな時間変化 があるため,精度良く除去するのは難しい.今回計測した0~400フレーム間のピッチ成分には,低周波なドリフト誤差が入っていると見られる.そこで,カルマンフィルタの推定値とSMGの誤差を周波数解析して比較した. 結果を図7,8に示す.カルマンフィルタ,SMG(汎用ジャイロ)の誤差の共に,3Hz周辺で強度が強いことが分かる.これによりカルマンフィルタによる誤差推定ができているといえる.また,カルマンフィルタの推定値の場合,1Hz周辺の低周波成分でも強度が強いことが分かる.これは,画像から回転行列・並進ベクトルが求まらない場合,推定値および分散値を時間方向にそのまま引継ぎするため,その直流成分が表現されていると考える.

3.2. 画像からの並進ベクトルの算出結果

今回,ジャイロセンサの誤差補正には提案手法による 効果を示すことができた.一方,加速度センサの誤差補 正はうまくできなかった.理由は,画像から求まる並進 ベクトルの精度にある.カルマンフィルタの観測量とし て利用するため,ここで十分な精度が得られないと誤差 の推定精度は期待できない.

画像から求まる並進ベクトルの結果を図9に示す.直 進路1000フレーム間(100sec)において400~600フレー ム間の画像から求めた並進ベクトル(ノルム1で正規化) の値を示す.図9から分かるように並進ベクトルは,FOG, サーボ加速度から求めた並進ベクトルと比較して一致し ていない.これは,空間における注視点と時刻t,t+1 のカメラ画像上の特徴点の3点間において三角形がしっ かりできていないためと考える.ほぼ直線に近い三角形 になっているため,画像間の偏差は回転成分に丸められ, 並進成分が正確に算出することができない.そこで,カ メラの光軸をX軸から下 50度傾けて同様の試験をした

図 9 並進ベクトルの結果(400~600 フレーム間) (上)画像から算出(下)FOG・サーボ加速度から算出

が,並進については一致しなかった.光軸方向の並進成 分は常にほぼ0.99近い値になることから,今回の低速か つ10Hz 周期で動く移動量では十分な三角形が作れない ことが考えられる.最急勾配法の枠組みであれば,並進 成分が0でも回転成分は求められることが分かっている [9].そこで,今回の実験ではジャイロだけの補正を考え, 状態量をのみの3次元でカルマンフィルタを構成し 直した.

3.3. カーブ走行時の影響

カーブ走行時(200 フレーム)の結果を表4 に示す. 表4 に示したとおり,カーブ時においても提案手法によって姿勢精度の改善が見られた.SIFT は微小なアフィン 変換についてもロバストであるという報告がある[5].今回,図10 に示すようにヨー方向0.8rad/secの回転時においても10Hz 周期の移動量としては微小なため十分に SIFT による対応付けができていることを確認した(この際,回転量が多い場合はジャイロの誤差も大きくなるため誤対応除去の窓幅を20pixelから50pixelに変更した).

4. まとめ

画像から求められる回転行列・並進ベクトルを利用し, カルマンフィルタによって慣性センサの誤差補正を行う 手法を提案した.移動ロボットでの計測データを用いた 実験の結果,姿勢については,ジャイロセンサの時間経 過によるドリフト誤差をカルマンフィルタにより推定す

表4 姿勢精度(平均誤差)の比較(カーブ走行時)

200フレーム間の 平均誤差(deg)	yaw	roll	pitch
従来手法(ジャイロのみ)	12.88	3.79	6.21
提案手法	3.53	1.75	2.57

図 10 カーブ走行時(ヨー方向 0.8rad/sec)の SIFT による対応付け

表 5 提案手法の各処理時間 (Intel Pentium M 1.2GHz)

	SIFT	Kdtree	BBF	LSM	KF
処理時間(ms)	645.9	9.0	96.7	36.7	1.8

ることができた.今後は,移動障害物などによるオクルージョ ンの影響についても優位性を評価していきたい.また今 回はオフライン検証であったが,センサとして構成した い.そのためにはリアルタイム処理の実現が必要である. 表5に現状の処理時間をまとめた.SIFT 特徴量の算出と BBF による対応付けの部分で処理負荷が大きい.処理負 荷低減は,GPU(Graphics Processing Unit)の利用や FPGA (Field Programmable Gate Array)によるハードウェア化 によって対処可能であり,今後取り組んでいきたい.

対 献

- [1] 鈴村将人,深谷克己,浅田宏起,"車両運動統合制御 (VDIM)の現状と展望,"トヨタ・テクニカル・レビュ -,vol.55,no.1,pp48-53,Nov.2006.
- [2] 前山 祥一,大矢 晃久,油田 信一,"移動ロボットのための遡及的現在位置推定法 処理時間を要する外界センサデータの利用 ,"日本ロボット学会誌,vol.15, no.7, pp.115-121, Oct. 1997.
- [3] 関晃仁, 奥富正敏, "ステレオ動画像を利用した道路面領域の抽出と追跡による自車両の運動推定,"情報処理学会論文誌:コンピュータビジョンとイメージメディア, Vol.47, No.SIG5 (CVIM13), pp.90-99, March, 2006
- [4] Niklas Karlsson, Enrico Di Bernardo, Jim Ostrowski, Luis Goncalves, Paolo Pirjanian, Mario E. Munich, "The vSLAM Algorithm for Robust Localization and Mapping," Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2005, pp.24-29, April.2005.
- [5] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Proc. of International Journal of Computer Vision (IJCV), 60(2), pp.91-110, 2004.
- [6] R.セジウィック, "領域探索,"アルゴリズムC 探索・文字列・計算幾何, pp.205-220,(株)近代科学社, 1996.
- [7] J.S. Beis and D.G Lowe., "Shape indexing using approximate nearest-neighbour search in high-dimensional spaces," Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp.1000-1006, 1997.
- [8] 金谷健一, "3 次元剛体運動の画像解析,"画像理解 3 次元 認識の数理, pp.79-114, 森北出版(株), 2005.
- [9] 藤吉弘亘, "Gradient ベースの特徴抽出 SIFT と HOG ," 情報処理学会研究報告 CVIM 160, pp.211-224, Sep, 2007.
- [10] 前山 祥一,大矢 晃久,油田 信一,"移動ロボットの屋外 ナビゲーションのためのオドメトリとジャイロのセンサ 融合によるデッドレコニング・システム,"日本ロボット 学会誌, vol.15, no. 8, pp. 1180-87, Nov. 1997.
- [11] 金井喜美雄, ビークル, 坪内孝司(編), pp.142-173, (社) 計測自動制御学会, 2003.
- [12] 徐剛, 辻三郎, "エピポーラ幾何,"3次元ビジョン, pp.61-77, 共立出版(株), 2005.
- [13] 坂本修(他), ジャイロ活用技術入門, 多摩川精機(編),
 (株)工業調査会, 2002.
- [14] Eun-Hwan Shin, Naser El-Sheimy, "Accuracy Improvement of Low Cost INS/GPS for Land Applications," Proceedings of the 2002 National Technical Meeting of the Institute of Navigation, pp.146-157, Jan. 2002.