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Abstract. Object category recognition in various appearances is one of
the most challenging task in the object recognition research fields. The
major approach to solve the task is using the Bag of Features (BoF).
The constellation model is another approach that has the following ad-
vantages: (a) Adding and changing the candidate categories is easy; (b)
Its description accuracy is higher than BoF; (c) Position and scale infor-
mation, which are ignored by BoF, can be used effectively. On the other
hand, this model has two weak points: (1) It is essentially an unimodal
model that is unsuitable for categories with many types of appearances.
(2) The probability function that represents the constellation model takes
a long time to calculate. In this paper we propose a “Multimodal Constel-
lation Model” to solve the two weak points of the constellation model.
Experimental results showed the effectivity of the proposed model by
comparison to methods using BoF.

Keywords: Constellation model, Multimodalization, Speed-up, Object
category recognition, EM algorithm.

1 Introduction

In this paper, we consider the problem of recognizing semantic categories with
many types of appearances such as Car, Chair, and Dog under environment
changes that include direction of objects, distance to objects, illumination, and
backgrounds. This recognition task is challenging because object appearances
widely varies by difference of objects in semantic categories and environment
changes, which complicates feature selection, model construction, and training
dataset construction. One of the application of this recognition task is image
retrieval.

For these recognition tasks, a part-based approach, which uses many distinc-
tive partial images as local features, is widely employed. By focusing on partial
areas, this approach can handle a broad variety of object appearances. Typical
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well-known methods include a scheme using Bag of Features (BoF) [3] and Fer-
gus’s constellation model [7]. BoF is an analogy to the “Bag of Words” model
originally proposed in the natural language processing field. Approaches using
BoF have been proposed: using classifiers such as SVM (e.g., [9][12][16]), and doc-
ument analysis methods such as probabilistic Latent Semantic Analysis (pLSA),
Latent Dirichlet Allocation (LDA), and Hierarchical Dirichlet Processes (HDP)
(e.g., [2][6][13]).

The constellation model represents target categories by probability functions
that represent local features that describe the common regions of objects in
target categories and the spatial relationship between the local features. The
number of regions is assumed to be five to seven. Details will be introduced in
Section 2.1.

The constellation model has the following three advantages:

(a) Adding and changing the target categories is easy.
In this reseach field, recognition methods are often categorized as a “gener-
ative model” or a “discriminative model” [1]. This advantage is because the
constellation model is a generative model. A generative model individually
makes a model for each target category. Therefore the training process for
adding target categories is only needed for the added target categories. For
changing the already learnt target categories, it is only necessary to change
the models used in the tasks; no other training process is necessary. On
the other hand, discriminative models, which describe a decision boundary
to classify all target categories, have to relearn the decision boundary each
time adding or changing the target categories. For recognition performance,
the discriminative model generally outperforms the generative model.

(b) Description accuracy is higher than BoF due to continuous value expression.
Category representation by BoF is a discrete expression by histogram formed
by the numbers of local features corresponding to each codeword. On the
other hand, since the constellation model is a continuous value expression
by probability function, the description accuracy is higher than BoF.

(c) Position and scale information can be used effectively.
BoF ignores spatial information of local features to avoid complicated spatial
relationship descriptions. On the other hand, the constellation model uses a
probability function to represent rough spatial relationships as one piece of
information to describe the target categories.

However the constellation model has the following weak points:

(1) Since it is essentially a unimodal model, it has low description accuracy when
objects in the target categories have many types of appearances.

(2) The probability function that represents the constellation model takes a long
time to calculate.

In this paper, we propose a model that improves the weak points of the con-
stellation model. For weak point (1), we extend the constellation mode to a
multimodal model. A unimodal model has to represent several types of appear-
ances as one component. But by extension to a multimodal model, some appear-
ances can be cooperatively described by components of the model, improving
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the accuracy category description. This improvement is the same as extending
a representation by Gaussian distribution to that by Gaussian Mixture Model
in local feature representation. In addition, we speed-up the calculation of the
probability function to solve weak point (2).

Since advantages (b) and (c) are not often described in other papers, we
quantitatively show their correctness in Section 4.4.

Another constellation model is proposed before Fergus’s constellation model
in [15]. Multimodalization of this model was done in [14], but the structure of
these models considerably differs from Fergus’s constellation model, and they
have three weak points: they do not have the advantage (b) of Fergus’s constel-
lation model since the way to use local features is close to BoF, they do not
use the information of common regions’ scale, and they can not lean appearance
and position simultaneously since the learning of appearance and position has
a dependence. However, Fergus’s constellation model takes a long time to cal-
culate the probability function which represents the model, so it is unrealistic
to multimodalize the model since the parameter estimation needs many time of
probability function calculation. In this paper, we realize the multimodalization
of Fergus’s constellation model with the speeding-up the calculation of the prob-
ability function. Fergus’s constellation model was also improved in [8], but the
improvements are to become that the model can use many sorts of local features
and to modify the positional relationship expression. For clarity, in this paper
we focus on the basic Fergus’s constellation model.

Image classification tasks can be classified into the following two types:

1. Classify images with target objects occupying most area of an image, and
the object scales are similar (e.g. Caltech101/256).

2. Classify images with target objects occupy partial area of an image, and the
object scales may differ (e.g. Graz, PASCAL).

The method proposed in this paper targets Type 1 images. It can, however, also
handle Type 2 images using methods such as the sliding window method, and
then handle them as Type 1 images.

The remainder of this paper is structured as follows. In Section 2, we de-
scribe the Multimodal Constellation Model, the speeding-up techniques, and
the training algorithm. In Section 3, we explain the classification and describe
our experiments in Section 4. Finally, we conclude the paper in Section 5.

2 Multimodal Constellation Model

In this section we describe Fergus’s constellation model, then explain its
multimodalization, and finally describe the speeding-up calculation.

2.1 Fergus’s Constellation Model [7]

The constellation model describes categories by focusing on the common ob-
ject regions in each category. The regions and the positional relationships are
expressed by Gaussian distributions.
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The model is described by the follow equation:

p(I|Θ) =
∑

h∈H

p(A, X, S,h|Θ)

=
∑

h∈H

p(A|h, θA)p(X |h, θX)p(S|h, θS)p(h|θother), (1)

where I is an input image and Θ is the model parameters. Image I is expressed as
a set of local features. Each local feature holds the feature vectors of appearance,
position, and scale. A, X , and S is a set of feature vectors of appearance, position,
and scale, respectively. In addition, as a hyperparameter, the model has the
number of regions for description: R. h is a vector that expresses the combination
of correspondences between local features extracted from image I and each region
of the model. H is a set of all the combinations of correspondences. By

∑
h∈H

all combinations are covered. p(A|h, θA) is expressed as the multiplication of R
Gaussian distributions. p(X |h, θX) expresses a pair of x, y coordinates of each
region as a 2R dimensional Gaussian distribution. p(S|h, θS) is also expressed
by one Gaussian distribution. For details refer to [7].

The part of the equation, which cyclopedically calculates all combinations
between all local features and each region of the model, is in the form of sum-
mation. However, the part of the equation that describes a target category,
p(A, X, S,h|Θ) , is substantively represented by multiplication of the Gaussian
distributions. Therefore, Fergus’s constellation model can be considered as a
unimodal model.

2.2 Multimodalization

We define the proposed “Multimodal Constellation Model” as follows:

pm(I|Θ) =
K∑

k

{
L∏

l

G(xl|θk,r̂k,l
)

}
· p(k)

=
K∑

k

{
L∏

l

G(Al|θ(A)
k,r̂k,l

)G(Xl|θ(X)
k,r̂k,l

)G(Sl|θ(S)
k,r̂k,l

)

}
· p(k) (2)

r̂k,l = arg max
r

G(xl|θk,r)

where K is the number of components. If K ≥ 2, then the model becomes
multimodal. L is the number of local features extracted from image I, and G( )
is the Gaussian distribution. Also, Θ = {θk,r , p(k)}, θ = {µ,Σ}, I = {xl}, and
x = (A,X,S). θk,r is a set of parameters of the Gaussian distribution of region
r in component k. xl is the feature vector of the l-th local feature. A,X, and S,
which are the feature vectors of appearance, position, and scale, respectively, are
subvectors of x. p(k) is the existence probability of component k. r̂k,l is the index
of the most similar region to the local feature l of the image I, in component k.
Moreover, R (number of regions) exists as a hyperparameter, though it does not
appear explicitly in the equation.
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2.3 Speeding-Up Techniques

Since the probability function that represents Fergus’s constellation model takes
a long time to calculate, estimating the model parameter is also time-consuming.
In addition, this complicates multimodalization because multimodalization in-
creases the number of parameters and thus completing the training in realistic
time becomes impossible. Here we describe two speeding-up techniques.

[Simplifying matrix calculation]. For simplification, we assumed all covari-
ance matrices to be diagonal as an approximation. This modification consider-
ably decreases the calculation cost of (x − µ)tΣ−1(x − µ) and |Σ| needed for
calculating the Gaussian distributions. The total calculation cost is reduced from
O(D3) to O(D) for D × D matrices. In particular, when assuming that Σ is a
diagonal matrix whose diagonal components are σ2

d,

(x − µ)tΣ−1(x − µ) =
D∑

d

1
σ2

d

(xd − μd)2 (3)

|Σ| =
D∏

d

σ2
d. (4)

[Modifying Σh∈H to
∏L

l and arg maxr]. The order of Σh∈H in (1) is O(LR),
where L is the number of local features and R is the number of regions. In
actuality, even though A* search method is used for speeding-up in [7], the total
calculation cost is still large. In the proposed method we changed Σh∈H to

∏L
l

and arg maxr. As a result, the cost is reduced to O(LR).
This approach was inspired from [11] who targeted the classification of iden-

tical view angle car images captured by a static single camera, and modified
the constellation model for this task. We referred to the part of calculation cost
reduction.

Here we compare the expression of each model, and describe that Fergus’s
model and our model approximately have an equivalent description ability. First
we describe each model with its calculation procedure. Fergus’s model cyclope-
dically calculates probabilities of all combinations of correspondences between
regions and local features. The final probability is calculated as a sum of these
probabilities. The cyclopedic search of corresponding local features is done by
Σh∈H . On the other hand, our model calculates the final probability using all
the local features at once. This is expressed as

∏L
l . After the region which is

most similar to each local feature is selected (arg maxr), the probability to the
region is calculated for each local feature. The final probability is calculated as
a multiplication of these probabilities.

Next, we describe each model with its handling of occlusions (in particular,
lack of necessary local features). Fergus’s constellation model explicitly handles
occlusion. When calculating probabilities for combinations of correspondences,
some regions do not correspond to any local feature. This expresses the existence
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of occlusions. The probability of the occluded regions’ combination is also mod-
eled. For Fergus’s constellation model, by such explicit handling, the probability
considering occlusion is calculated. On the other hand, our model calculates the
final probability using all the local features in an image at once. Therefore the
final probability is calculated as a probability without the occluded local fea-
tures. In addition, frequent occlusion patterns are learnt as one appearance of
an object by multimodalization. This corresponds to the modeling the probabil-
ity of occluded region’s combination in Fergus’s model. For our model, by these
implicit handling, the probability considering occlusion is calculated.

At last, we consider images with unnecessary local features. For Fergus’s con-
stellation model, at the cyclopedic searches of corresponding local features, the
probability for the combination of correspondences with unnecessary local fea-
tures becomes small, therefore the final probability is almost not affected by
unnecessary local features since it is calculated as a sum of probabilities of the
combinations. On the other hand, for our model, since the final probability is
calculated as a multiplication of each local feature’s probability, unnecessary
local features decrease the final probability. However, the probability decreases
simultaneously for all candidate categories. Therefore the classification results is
not affected by unnecessary local features.

According to [7], the actual computation time of Fergus’s constellation model
to estimate model parameters is 24–36 hours per model for R=6–7, L=20–30 per
image, and using 400 training images. However, our model that applies the above
two techniques takes around ten seconds to estimate the parameters in the same
condition and K=1 (unimodal). In addition, even when K ≥ 2 (multimodal), it
only takes a few dozen seconds to estimate the parameters.

2.4 Parameter Estimation

Model parameter estimation is carried out using the EM algorithm [4]. Fig. 1
shows the model parameter estimation algorithm for the Multimodal Constella-
tion Model. N denotes the number of training images, and n denotes the index
of the training image. xn,l denotes a feature vector of local feature l in training
image n. r̂k,n,l denotes r̂k,l in training image n.

One difference with the general EM algorithm for the Gaussian Mixture Model
is that the data that update µ,Σ are not per image but per local feature ex-
tracted from the images. Degree of belonging qk,n of training image n to com-
ponent k is calculated in the E step, and then all local features extracted from
training image n participate in the updating of µ,Σ based on the value of qk,n.
In addition, local feature l participates in the updating of µ,Σ of only region
r̂k,n,l to which local feature l corresponds.

3 Classification

The classification is performed by the following equation:

ĉ = arg max
c

pm(I|Θc)p(c), (5)
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(1) Initialize model parameter θk,r, and πk.
(2) Estep :

qk,n =
πkp(In|θk)

∑K
k πkp(In|θk)

, where p(In|θk) =
L∏

l

G(xn,l|θk,r̂k,n,l
).

(3) Mstep :

µnew
k,r =

1

Qk,r

N∑

n

∑

l:(r̂k,n,l=r)

qk,nxn,l,

Σnew
k,r =

1

Qk,r

N∑

n

∑

l:(r̂k,n,l=r)

qk,n

(
xn,l − µnew

k,r

) (
xn,l − µnew

k,r

)t
,

πnew
k =

Nk

N
,

where Qk,r =
N∑

n

∑

l:(r̂k,n,l=r)

qk,n , Nk =
N∑

n

qk,n.

(4) If parameter updating converges, the estimation process is finished, and p(k) = πk,
otherwise return to (2).

Fig. 1. Model parameter estimation algorithm for the Multimodal Constellation Model

where ĉ is the resultant category, c is a candidate category for classification, and
p(c) is the prior probability of category c, which is calculated as the ratio of
training image of category c to all candidate categories.

Since the constellation model is a generative model, it is easy to add categories
or change candidate categories, and thus the training process is only indepen-
dently needed first time a category is added. For changing already learnt candi-
date categories, it is only necessary to change the models used in the tasks. On the
other hand, discriminative models makes one classifier (decision boundary) using
all of the data for all candidate categories. Therefore it has the following two weak
points: a training process is needed every time candidate categories are added and
changed, and for relearning, all of the training data, needs to be keept.

4 Experiments

We evaluate the effectivity of multimodalization for constellation models by com-
paring two models, Multimodal Constellation Model (“Multi-CM”) and Uni-
modal Constellation Model (“Uni-CM”). Uni-CM is equivalent to the proposed
model when K=1 (unimodal).

We also compare the proposed model’s performance to the two methods us-
ing BoF. “LDA+BoF” is a method using LDA, one document analysis method.
“SVM+BoF” is a method using SVM. Multi-CM, Uni-CM, and LDA+BoF are
generative models, SVM+BoF is a discriminative model, and LDA is a multi-
modal model.
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Fig. 2. Target images in Caltech [7] Fig. 3. Target images in Pascal [5]

Next, we discuss the influence of hyperparameters K and R on the classifica-
tion rate and quantitatively show the two previously mentioned advantages of
the constellation model.

As a preparation for the experiments, object areas were clipped from the im-
ages as target images using the object area information available in the dataset.
We defined the task as classifying target images into correct categories. The clas-
sifying process was carried out for each dataset. Half of the target images were
used for training and the rest for testing.

Two image datasets were used for the experiments. The first is the Caltech
Database [7] (“Caltech”), and the other is the dataset used in the PASCAL
Visual Object Classes Challenge 2006 [5] (“Pascal”). Caltech consists of four
categories. Fig. 2 shows examples of the target images. The directions of the
objects in these images are roughly aligned but their appearances widely varies.
Pascal has ten categories. Fig. 3 shows examples of the target images. The di-
rection and the appearance of objects in Pascal vary widely. Furthermore, the
pose of objects in some categories (e.g., Cat, Dog, and Person) vary considerably.
Therefore Pascal is considered more difficult than Caltech.

The identical data of local features are used for all methods compared here
to exclude the influence of difference of local features on the classification rate.
In addition, we experimented ten times by varying training and test images and
used the average classification rate of ten times for comparison.

In this paper we empirically determined K (number of components) as five
and R (number of regions) as 21. For the local features we used the KB detector
[10] for detecting and the Discrete Cosine Transform (DCT) for describing. The
KB detector outputs positions and scales of local features. Patch images are
extracted using these information, and are described by the first 20 coefficients
calculated by DCT excluding the DC. Therefore, the dimension of feature vector
x is 23 (A:20, X:2, S:1).

4.1 Effectivity of Multimodalization and Comparison to BoF

For validating the effectivity of multimodalization, we compared the classifica-
tion rates of Multi-CM and Uni-CM. We also compared the proposed method to
LDA+BoF and SVM+BoF, which are related methods. These related methods
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Table 1. Effectivity of multimodalization and comparison to BoF, by average classifi-
cation rates (%)

Dataset LDA+BoF SVM+BoF Uni-CM Multi-CM

Caltech 94.7 96.4 98.7 99.5

Pascal 29.6 27.9 37.0 38.8

have hyperparameters to represent the codebook size (k of k -means) for BoF.
The number of assumed topics for LDA corresponds to the number of compo-
nents K of Multi-CM. We show the best classification rates while changing these
hyperparameters in the following results.

Table 1 shows that the classification rate of Multi-CM outperforms Uni-CM.
This shows that multimodalization to a constellation model is effective to such
datasets as Caltech and Pascal which contain many types of appearances in a
category (e.g., Caltech-Face: differences of persons, Pascal-Bicycle: direction of
bicycle).

Since the results also show that the proposed model obtains better classifi-
cation rate than LDA+BoF (generative model) and SVM+BoF (discriminative
model), we can obtain better classification performance with the constellation
model than using methods based on BoF, for either generative or discriminative
models.

4.2 Number of Components K

Here we discuss the influence of K, one of the hyperparameters of the proposed
method, on the classification rate. K is changed in the range of 1 to 9 in in-
crements of 2 to compare the classification rates at each K. When K=1, it is
Uni-CM, and when K ≥ 2 they are Multi-CM. The number of regions R is fixed
to 21.

Figure 4 shows the results. Note that the scale of the vertical axis for each graph
differs because the difficulty of each dataset differs greatly. The classification rates
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saturate at K=5 for Caltech and at K=7 for Pascal because the appearance vari-
ation of objects for Pascal is bigger than Caltech. However,we can chooseK=5as a
constant setting because these classification rates only differ slightly
when K ≥ 2.

In addition, the fact that the classification rates when K ≥ 2 are better than
K=1 shows the effectivity of multimodalization.

4.3 Number of Regions R

To discuss the influence of R, another hyperparameter of the proposed method,
on the classification rate, we evaluated the classification rates by increasing R in
the range of 3 to 21 in increments of 3, and the classification rate at each R is
shown in Fig. 5. The number of components K is fixed to 5. The results contain
the classification rates of Uni-CM and Multi-CM.

The improvement of classification rates saturate at R=9 for Caltech and at
R=21 for Pascal. In addition, at all R, the classification rates of Multi-CM are
better than Uni-CM, so the effectivity of multimodalization is also confirmed here.

For Fergus’s constellation model, R=6–7 is the extent that the training pro-
cess can be finished in realistic time. For the proposed method with the speed-up
techniques, we increased R (number of regions) until the improvement of the
classification rate saturated, in realistic time. Therefore the speeding-up tech-
niques not only contributed to the realization of multimodalization but also to
the improvement of the classification performance.

4.4 Continuous Value Expression and Position-Scale Information

Here, we quantitatively validate the advantages of the constellation model de-
scribed in Section 1; (b) Description accuracy is higher than BoF due to con-
tinuous value expression and (c) Position and scale information ignored by BoF
can be used effectively.

First, (b) is validated. The comparison of BoF and the constellation model
should be performed on the condition only with the difference that a continu-
ous value expression by a probability function and a discrete expression by a his-
togram, formed by the numbers of local features, correspond to each codeword.
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Table 2. Validation of effectivity of continuous value expression and position-scale
information, by average classification rate (%)

Dataset LDA+BoF Multi-CM no-X,S Multi-CM

Caltech 94.7 96.5 99.5

Pascal 29.6 33.5 38.8

Therefore we compared LDA+BoF, which is a generative multimodal model iden-
tical to a constellation model, and Multi-CM without position and scale informa-
tion that are not used in LDA+BoF (“Multi-CM no-X,S”). Next, to validate (c)
we compared Multi-CM no-X,S and the normal Multimodal Constellation Model.

Table 2 shows the classification rates of these three methods. The classification
rate of Multi-CM no-X,S is better than LDA+BoF, demonstrating the superior-
ity of continuous value expression. The Multi-CM classification rate outperforms
Multi-CM no-X,S. This shows that the constellation model can adequately use
position and scale information.

5 Conclusion

We proposed a Multimodal Constellation Model for object category recognition.
Our proposed method can train and classify faster than Fergus’s constellation
model and describe categories with a high degree of accuracy even when the
objects in the target categories have many types of appearances.

The experimental results show the following effectivities of the proposed method:

– Performance improvement by multimodalization
– Performance improvement by speeding-up techniques, enabling use with

more regions in realistic time.

We also compared Multi-CM to the methods using BoF, LDA+BoF, and SVM+
BoF. Multi-CM showed higher performance than these methods. Furthermore we
quantitatively showed the advantages of the constellation model; (b) Description
accuracy is higher than BoF due to continuous value expression and (c) Position
and scale information ignored by BoF can be used effectively. In Sections 1 and
3, by comparing generative and discriminative models, we also showed that the
advantage (a) of the constellation model is that candidate categories can be
easily added and changed.
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