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ABSTRACT 
Variations in camera-captured images usually occur 
naturally. For example, the appearance of an object 
usually differs for every pose and degradation effect 
might occur during the capturing process. While we could 
use a simple manifold to represent the variability of pose, 
relying on the simple manifold technique to deal with 
both pose and degradation problems is not possible, since 
a simple manifold does not take into account the 
information of sample distributions in feature space. In 
this paper, we propose a technique which embeds view-
dependent covariance matrix in object manifold to 
develop a robust 3D object recognition system. Here, the 
view-dependent covariance matrices were obtained in an 
efficient way by interpolating eigenvectors and 
eigenvalues along the manifold. Experiment results 
showed that our developed 3D object recognition system 
could accurately recognize 3D objects even from images 
which are influenced by geometric distortions and quality 
degradation effects. 
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1.  Introduction 
 
Recognizing a 3D object from its 2D images raises many 
challenges. For more than a decade, the main issue for 
appearance-based approach is to solve the pose problem. 
It is not surprising that the performances of object 
recognition systems drop significantly when large pose 
variations are present in input images [1]. Therefore, 
various attempts have been made to handle this issue. 

Earlier methods focused on constructing invariant 
features [2], synthesizing a prototypical frontal view [3], 
or classify pose problems [4]. Following the popular 
eigenface approach which was proposed by Turk and 
Pentland [5], many techniques have been extended to 
explore recognition in eigenspace domain. Recently, 
researchers improved the previous eigen model with the 
use  of  appearance  manifold  in  eigenspace  in  order   to  

 
 
 
 
 

Figure 1. Samples of 3D objects with geometric distortions 
(translation, rotation) and quality degradations (motion blur) 

 
 
achieve pose-invariant recognition. Addressing various 
problems, many types of appearance manifolds have been 
developed, such as the simple appearance manifold in [6-
7] which could handle pose and illumination variations, 
the appearance manifold with probabilistic techniques [8-
9] for handling various facial changes, the layer-
transparent manifold in [10] for recognizing occluded 
objects, etc. 

We found that the work of Murase and Nayar in [7] is 
more favorable, due to its simplicity and applicability to 
more general pose variation problems. Thus, in this paper, 
we put our focus on their work. However, the 
disadvantage of their Parametric Eigenspace approach is 
the model only works well when the input images have no 
degraded effects. Unfortunately, this assumption is not 
realistic in real-world applications. Some degradation 
effects usually occur and contaminate the original images 
during the capturing process or segmentation process. 
Thus, relying on a simple manifold to handle this problem 
is not sufficient. Fig. 1 shows some image samples of 3D 
objects with some geometric distortion and quality 
degradation effects.  

We have showed that to overcome this issue, 
constructing an appearance manifold with embedded 
covariance matrix is very useful. By using this appearance 
manifold model, the robustness of the system will be 
increased, since the manifold could capture the pose 
changes and the embedded covariance matrix could 
define the sample distribution information of every pose 
along the manifold. Moreover, since the appearance of an 
object in the captured image is different for every 
different pose, the covariance matrix value is also 
different for every pose. Thus, it is necessary to construct 
covariance matrix which is view-dependent.  
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Considering the models previously proposed by us in 
[11], a major limitation still exists, such as the need to 
critically control the correspondence between learning 
points in the interpolation process for manifold 
construction. When a huge number of learning points 
exists in the system, the controlling process becomes 
costly and time consuming. 

In this paper, we propose the View-dependent 
Covariance matrix by Eigenvector Interpolation (VCEI) 
method where every mean vector and covariance matrix 
has different value for each training pose. The advantage 
of our proposed method is that it is not necessary to 
perform controlling process on the training images. In 
order to cover the untrained poses, we construct the 
appearance manifold by interpolating only the 
eigenvectors and eigenvalues of two consecutive trained 
poses. Thus, the appearance manifold will be noise-
invariant and efficient. 

The remainder of this paper is organized as follows: we 
describe the construction process of manifold in Section 2. 
Section 3 presents the description of embedding process 
of view-dependent covariance matrix in an object 
manifold. Section 4 shows and discusses the performance 
evaluation in recognizing 3D objects. Finally, Section 5 
presents our conclusion. 
 
 
2. Manifold of Object 
 
Generally, the appearance-based approaches deal with a 
set of learning images in various capturing conditions. 
Since these images are usually high-dimensional images, 
they could not be applied directly due to efficiency 
reasons. Here, PCA is used to efficiently represent a 
collection of images by reducing their dimensionality. 
PCA represents a linear transformation that maps the 
original n-dimensional space onto a k-dimensional feature 
subspace where normally k<<n.  

Next, the first k eigenvectors will be used to project S 
learning samples of P objects with H poses.  Thus, with 
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of sample images. These eigenvectors ie  were obtained 
by solving the eigen decomposition iii Qee =λ , where 
Q is the auto correlation matrix of the training set and iλ  
is the eigenvalue associated with the eigenvector ie . Note 
that in this section, the eigenvectors and eigenvalues are 
used only to construct the eigenspace. Meanwhile, later in 
the next sections, the eigenvectors and eigenvalues are 
derived from the covariance matrix of each training-pose.  

In the Simple Manifold (SM) method, after 
transforming learning images onto the eigenspace, the 
manifold of an object could be obtained by interpolating 
the mean  vector  of  training  images  of  one  pose  to  its  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A simple manifold of an object in feature space 
 
 
consecutive poses. Practically, we can simply apply an 
interpolation method to construct the manifold between 
training images in two-consecutive poses. Fig. 2 shows 
the illustration of the construction process of a simple 
manifold of an object in the feature space. 
 
 
3.   Embedding View-dependent Covariance  
       Matrix in Object Manifold 
 
This section describes the process of constructing the 
appearance manifold with embedded covariance matrix in 
eigenspace and the recognition process of input images 
using the Mahalanobis distance measurement.  

The construction process of View-dependent 
Covariance matrix by Eigenvector Interpolation (VCEI) 
method consists of two stages of interpolation process: the 
interpolation of mean vectors and the interpolation of 
eigenvectors and eigenvalues. The mean vector is used to 
represent the center point of samples in each learning 
pose, while the eigenvectors and eigenvalues represent the 
distribution of samples in each pose. The interpolation 
process is useful to cover the information of untrained 
poses.  

Basically, the interpolation process of the mean vector 
can be done by simply using one of the several existing 
interpolation algorithms. Meanwhile, the interpolation 
process of eigenvectors and eigenvalues are done based 
on high-dimensional rotation theory. As the eigenvectors 
and eigenvalues can be considered as axes directions and 
lengths of a hyper-ellipsoid in the eigenspace, we 
consider obtaining the covariance matrices of untrained 
poses by rotating the hyper-ellipsoids of two-consecutive 
trained poses. Fig. 3 shows the 2D illustration of the 
interpolation process of eigenvectors and eigenvalues in 
the feature space. Meanwhile, Fig. 4 shows the 
construction process of an appearance manifold with 
view-dependent embedded covariance matrix. Here, we 
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only use the horizontal pose parameter ( hθ ) to construct 
the appearance manifold. 

The algorithm for interpolating the eigenvectors and 
eigenvalues are summarized as follows: 
 
Input: 0E and 1E are matrices formed by aligning each 
pair of eigenvectors j0e and j1e , while 0λ  and 1λ  are 
matrices formed by aligning each pair of eigenvalues j0λ  
and  j1λ  (j=1, 2, .., k). The covariance matrices 0Σ  and 

1Σ  represent the sample distribution of two consecutive 
poses. 
1. Sort the eigenvectors 0E and 1E  in the decreasing order 

according to their eigenvalues 0λ and 1λ  to obtain 
0E′ and 1E′ , and also 0λ ′ and 1λ ′  

2. Check the angle between the corresponded axes so 
that it is less than or equal to 0.5π : 

if 010 <′′ j
T

j ee  then invert ),...,2,1(1 kjj =′e   
3. For covariance matrix xΣ , do calculation for the 

eigenvalue interpolation with 
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4. For covariance matrix xΣ , do calculation for the 
eigenvector interpolation with 0)( ERE ′= φxx  
where R represents an interpolated rotation when 

10 ≤≤ x and [ ]mφφφ ,...,1=  represents the parameter 
vector of rotation angles to define the rotation matrix. 
Here, ⎣ ⎦2

nm =  since the rotation angles always come 
in pairs in the complex conjugate roots process. 
(a) Define the rotation matrix by 
 T

01)( EER ′′=φ  
(b) Diagonalize )(φR  with Special Orthogonal (SO) 
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where +U is the conjugate transpose of U  

(c) Process complex conjugate roots: 
if mn 2= then  
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(d) Apply linear interpolation technique to obtain  
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Output:  Covariance matrix for untrained poses 
T

xxxx EΛEΣ = where )( xx diag λΛ =   
 
 

In the recognition stage, in order to recognize an input 
image z , we calculate its distance to the manifold of 
object p by Mahalanobis distance measurement defined in 
this formula:  

)()~()( )(~)()(~min)( )(1)()()( θθθθ
ppTppd µzµzz −−= −Σ  (1) 

Here, the Mahalanobis metric provides a sufficient way to 
classify images based on their related characteristics and 
likelihood in each pose class. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Illustration of an interpolation process of eigenvectors 

and eigenvalues in 2D feature space 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. An appearance manifold with view-embedded 
covariance matrix of a single object in feature space 

 
 
4. Performance Evaluation 
 
To evaluate the performance of our proposed method, we 
developed an application system for 3D object 
recognition. The developed system was used to recognize 
seven objects with various horizontal pose positions and 
influenced by geometric and quality-degradation effects, 
such as translation, rotation, and motion blur. 

Training Pose (h+1) 

Eigenvectors define 
the rotation axes 

Feature 2 

．．

Eigenvalues define 
the shapes 

Training Pose (h)

)()(
1 h

p θλ

)()(
1 h

pe θ

)()(
2 h

p θλ
)()(

2 h
pe θ

Feature 1 

… 

Viewpoint changes 

… 

Covariance matrix  
in feature space 

Manifold of object 
in feature space

Camera captured 
images 

Generated images 
with noise effects 

26



  
 
 
 

 
         Figure 5. Samples of 3D objects used in the experiments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 6. Samples of  training images of an object 
 
 

Samples of 3D objects used in our experiments are 
shown in Fig. 5, while Fig. 6 shows the samples of 
training images of an object. 

In the learning stage, a total of 6,552 images were 
normalized into 32x32pixels grayscale images. Each 
object consists of 36 poses with 10-degree intervals of 
horizontal positions (0o, 10o, 20o, …, 350o), and each pose 
consists of an original camera-captured image and 25 
generated images. The generated images were obtained by 
composing artificial noises, such as left and right 
translations (3, 6, 9, 12, 15pixels), clockwise and counter-
clockwise rotations (5o, 10o, 15o, 20o, 25o), and motion 
blur (5%, 10%, 15%, 20%, 25%).  

After projecting the images onto the eigenspace, the 
appearance manifolds were created based on the simple 
manifold (SM) method and appearance manifold with 
View-dependent Covariance matrix by Eigenvector 
Interpolation (VCEI) method. In the SM method, the 
mean vectors became the center of the manifold and an 
identity matrix was applied as the covariance matrices for 
every pose along the manifold. Meanwhile, in the VCEI 
method, the mean vectors were set as the center of the 
manifold, but the covariance matrices were obtained by 
interpolating the eigenvectors and eigenvalues as 
described in Section 3. Here, we applied linear 

interpolation technique to construct the manifold of mean 
vectors.  

Finally, we tested the system with input images that 
were different from the learning images (5o, 15o, 25o, …, 
355o) in horizontal poses and influenced by various types 
of degradation effects. For classification, we employed 
the Mahalanobis distance measurement shown in Eq.1 for 
the VCEI method. 

Fig. 7, Fig. 8, and Fig. 9 show a series of the 
recognition accuracies of two appearance manifold 
methods in recognizing images influenced with 
translation effects, rotation effects, and motion blur 
effects, respectively. All figures indicate that the proposed 
VCEI method achieved higher recognition accuracies than 
the SM method for all types of degradation effects. For 
recognizing non-degraded images, the VCEI method 
achieved 92.06% recognition accuracy, while the SM 
method only achieved 76.19%. When recognizing images 
with various geometric distortion and quality degradation 
effects, the VCEI method also could still achieve high 
recognition results, especially in blur and rotation cases. 

From our observation, we also found that the SM 
method gave good recognition results only for objects 
having distinct appearance and major differences in shape. 
Meanwhile, the VCEI method could recognize objects 
with similar appearances. Fig. 10 shows the example of 
cases where the SM method failed but the VCEI method 
succeeded.  

To observe the overall performance stability of both 
the SM and the VCEI methods, we show the average 
recognition accuracy for each method related to each 
degradation effect in Fig. 11. For the translation effect 
case, the average recognition accuracy of the VCEI 
method was 70.57%, higher than that of the SM method 
with 49.41%. In the case of the rotation effect, the 
average recognition accuracy of the VCEI method was 
83.73%, still higher than the average recognition accuracy 
of the SM method. Finally, for the motion blur case, the 
VCEI method also gave higher average recognition 
accuracy with 93.02% compared with that of the SM 
method with 76.75%. From Fig. 11, we could also learn 
that for both the SM and the VCEI methods, the 
robustness level of both methods to the motion blur effect 
was the highest, followed by the rotation effects and then 
the translation effects. Thus, images which are affected 
with the translation effects seemed to be the most difficult 
to recognize. Meanwhile, images which are influenced 
with the motion blur effects seemed to be the easiest to 
recognize. 
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    Figure 7. Recognition accuracies of images with                          
translation effects 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Figure 8. Recognition accuracies of images with                          
rotation effects 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig ure 9. Recognition accuracies of images with                          
motion blur effects 

 
 
 
 
 
(a)            (b)                (c)              (d)              (e)              (f) 
  Figure 10. Sample of cases where SM method failed but 

VCEI method succeed.   (Using SM method, object (b) was 
   recognized as object (a), and objects (d) and (f) were recognized 

as objects (c) and (e), respectively.) 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 11. Average recognition accuracy for each 
degradation effect 

 
 
5.  Conclusion  
 
We proposed the construction of appearance manifold 
with embedded View-dependent Covariance matrix by 
Eigenvector Interpolation (VCEI) method and developed 
its application to recognize 3D objects from images that 
are influenced by geometric distortions and quality-
degraded effects. This method is based on the 
eigenvectors and eigenvalues interpolation to form a 
view-dependent covariance matrix model. In our 
proposed method, it is not necessary to control the 
correspondence between learning points in each pose to 
their consecutive poses. Thus, two advantages of this 
VCEI method are its robustness and efficiency.  

Our future works include recognizing 3D human faces 
from images that are influenced by other types of effects, 
as well as developing a recognition system that uses fewer 
learning samples by implementing a larger interval of 
viewpoint orientations. 
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