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Abstract— Recently driving support techniques using in-
vehicle sensors have attracted much attention and have been
applied to practical systems. We focus on supporting drivers in
poor visibility conditions. Fog is one of the causes that lead to
lack of visibility. In this paper, we propose a method of judging
fog density using in-vehicle camera images and millimeter-wave
(mm-W) radar data. This method determines fog density by
evaluating both the visibility of a preceding vehicle and distance
to it. Experiments showed that judgments made by the proposed
method achieved a recognition rate of 84% when compared to
the ground truth obtained by human judgments.

I. INTRODUCTION

Recently, many driving support systems using computers
and various sensors have been developed. Some notable
examples include self-steering by white line detection, a rear-
end collision prevention system that operates by measuring
the distance to the vehicle ahead, a danger notification system
that recognizes pedestrians, and a system that automati-
cally operates the windshield wipers upon recognizing rain
drops [1]. When considering a driving assistance system, we
cannot ignore changes in weather conditions; in such adverse
weather conditions as rain, snow, or fog, driving becomes
more difficult than in fair conditions, leading to a significant
increase in accidents. Actually, in Japan, accident rates in
bad weather conditions are about 17 times higher than that in
fair conditions. Therefore, a close relationship exists between
driver assistance and weather recognition.

In this paper we focus on fog recognition. When driving,
fog negatively influences human perception and creates po-
tentially dangerous situations. According to Cavallo et al.,
under foggy conditions the distance to a preceding vehicle’s
tail light is perceived to be 60% further away than under fair
conditions [2]. Furthermore, fog significantly changes both
temporally and spatially, and as a result real-time detection is
needed that uses in-vehicle sensors. A method that involves
installing a large number of sensors along roads might be one
solution, but it may not accurately reflect a driver’s visual
condition. In addition, it would also be very expensive.

Considering these problems, we propose a method that
classifies fog density into three levels using in-vehicle cam-
eras and millimeter-wave (mm-W) radar. To evaluate fog
density, our method uses an extinction coefficient calculated
from preceding vehicle images and distance information.
An in-vehicle camera image reflects the driver’s visual
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Fig. 1. The visibility of a preceding vehicle depends on distance.

conditions, which are vital when driving. This is the prime
advantage of using an in-vehicle camera. The visibility
degradation of images captured in foggy conditions is evalu-
ated, especially by focusing on the change in visibility of
the preceding vehicle. And the distance to the preceding
vehicle also needs to be taken into account to determine the
fog density because under identical fog conditions, nearby
objects are easy to see while distant objects are not (Fig. 1),
therefore we use mm-W radar combined with an in-vehicle
camera. Compared with laser or supersonic-wave radar that
is influenced by bad weather conditions, especially fog when
rays scatter, mm-W radar is robust to such conditions.

The proposed method is composed of the following two
steps:

Calculation of extinction coefficient from both visibility
and distance information of a preceding vehicle
Classification of fog density using the extinction coef-
ficient

To evaluate the performance of the classifier, we compared
judgments by the proposed method with human judgments
in experiments using actual data. Automatic lighting of
fog lamps, speed control, and danger alerts are examples
of potential assistance to be realized with respect to fog
recognition.

This paper is organized as follows. In Sec. II-A, we
introduce a model that expresses the degradation of bright-
ness by atmospheric scattering. And in Sec. II-B, works
are introduced that deal with features of fog images. The
proposed method is described in Sec. III. Experiments to
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Fig. 2. The brightness degradation with distance ( ): (a) is
smaller than ; (b) is bigger than .

show the potential of the proposed method are reported
in Sec. IV. Then we discuss our method in Sec. V and
summarize the paper in Sec. VI.

II. RELATED WORKS

Koschmieder’s model [3] that expresses the degradation
of brightness by atmospheric scattering is explained using
actual images in Sec. II-A, and works related to features of
fog images are introduced in Sec. II-B.

A. Koschmieder’s model

Koschmieder’s model expresses the degradation of bright-
ness [3], represented as follows:

(1)

where is the observed luminance, is the intrinsic
luminance of an object, is the luminance of the sky,
is the extinction coefficient of the atmosphere, and is the
distance to the object.

This model means that it is difficult to recognize an
object in conditions where the extinction coefficient is high,
because in such conditions approaches . Fig. 2 shows
the brightness degradation with distance when . The
horizontal axis represents and the vertical axis represents

. approaches with increasing distance.

This model explains two effects of fog in the images:

Image contrast degradation
Image whitens as a whole

Fig. 3(a) was captured in fair weather, while Fig. 3(b) was
taken in fog. Both images include the same vehicle. When
fog becomes dense, becomes large, approaches ,
and the value of becomes small. Therefore, the vari-
ation of pixel values becomes small, which causes contrast
degradation. On the other hand, increases and
the mean of the pixel value shifts to the brightside, which
whitens the images. We can see these phenomena in the
actual data in Fig. 4 that shows the histogram of Figs. 3(a)
and 3(b).

From these, the variance of brightness can be considered
useful information to evaluate the visibility of a preceding
vehicle. Since the mean of the brightness is affected by such
camera settings as shutter speed, aperture, and so on, we
only refer to the variance.

Fig. 3. (a) Image captured in fair condition, (b) Image captured in foggy
condition
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Fig. 4. (a) Brightness histogram of Fig. 3(a), (b) brightness histogram of
Fig. 3(a)

B. Fog image processing

We introduce related works on the image processing of
fog images.

Narashimhan and Nayar proposed a method that restores
the contrast of images captured in adverse weather con-
ditions, especially foggy conditions [4]. This restoration
method also uses Koschmieder’s model to model brightness
deterioration.

Hagiwara proposed a method that evaluates road visibility
and the features of images captured from a digital still
camera in foggy conditions [5]. This work focuses on the
administration of roads by security cameras installed along
them, which is different from our purpose.

Some studies tried to estimate visibility while driving.
Kuwon proposed the concept of Motorists Relative Visibility
(MRV) [6], which is calculated by using the amount of
recognizable objects in the surrounding area, the average
luminance, and the acuity of objects measured by contrast in
the image. This work supposes the use of a stereo camera.
Hautiere et al. proposed a method that estimates visibil-
ity distance using in-vehicle stereo cameras and evaluated
the degradation of visibility distance in foggy conditions
compared with fair ones [7]. Leleve and Rebut tried to
estimate visibility using an in-vehicle camera for fog lamp
automation [8] and proposed a method to support night
driving using the halation of ones own car’s headlights.

III. FOG DENSITY RECOGNITION UNDER FOGGY

CONDITIONS

In this section, we explain our method in detail. Fig. 5
shows the flow of the method and its three steps: “clipping
of preceding vehicle image,” “calculation of extinction coef-
ficient,” and “classification of fog density.”
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Fig. 6. Clipping of preceding vehicle image
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Fig. 5. Flowchart of proposed fog density classification method

A. Clipping of preceding vehicle image

To evaluate the visibility of the preceding vehicle, first we
clip a preceding vehicle image from the captured image.

First we spot a rectangle candidate area for the preced-
ing vehicle using distance information to the vehicle. This
information is provided by mm-W radar. The candidate area
is larger than the size of the vehicle defined as a rectangle

m high and m wide. The position and the size of the
candidate area are obtained from mm-W radar.

Next, an accurate position of the vehicle is detected by
template matching in the candidate area, referring to the
template image of the vehicle. In experiments, the typical
vehicle image captured under fair conditions was used as the
template image. In template matching, the template image
and each vehicle candidate image are normalized before
calculating similarity. First, to restore the contrast degraded
by scattering, we apply the following equation

(2)

where is the brightness of each pixel in the images.
, are the minimum and maximum brightnesses

in the image, and is the upper limit of brightness,
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Fig. 7. Target area for calculation of extinction coefficient

which is set to in our environment. Next, we make
vector that contains brightness in the image and
normalize this vector. From this, we obtain normalized vector

. The -th component of vector is
represented as

(3)

where is the -th component of vector . We define
the similarity between a vehicle candidate and the template
image, as their inner product. We detect the vehicle candidate
region that gives the largest similarity as the preceding
vehicle region.

Fig. 6 shows the process of clipping. The clipping accu-
racy was 92.86% when this method was applied to 10,028
images. Here, all the images included a preceding vehicle.
The judgment to determine whether the images were cor-
rectly clipped was done manually.

B. Calculation of extinction coefficient

Here, we describe the calculation of extinction coefficient
in Koschmieder’s model shown in (1) using both the

visibility of the preceding vehicle and distance to it.
To calculate extinction coefficient , we use the relation-

ship between the variance of pixel values of the preceding
vehicle image and an original image of the vehicle. The
original image is captured in fair condition ( ): that
is, no degraded image.

The variance of pixel values of the vehicle image is
expressed in

(4)

WeB1.10

89



�����1�23� ��
(�

�����1�2�� ��
(�

�����1324� ��
(�

�!���1�23� ��
(�

Fig. 8. Extinction coefficients for various weather conditions

by Koshimieder’s model (1). Here, represents the number
of pixels in the image. On the other hand, the pixel values
in original image are

(5)

because the extinction coefficient of original image is . So,
the variance of the original image is

(6)

From (4) and (6), is expressed as

(7)

From these, when the original image is given, extinction
coefficient of the vehicle image can be calculated by

(8)

However, some factors will affect the calculation of the
extinction coefficient. Actually the bottom part of the vehicle
image includes tires and the road surface, and the upper
part includes the sky or silhouettes of people onboard. They
influence the variance of brightness more significantly than
scattering. To avoid this, we only use the region shown in
Fig. 7 as the target area when calculating the variance of
brightness.

Fig. 8 shows the results of calculating the extinction
coefficient. becomes larger as the fog becomes denser.

C. Classification of fog density

Here, we introduce a system that classifies fog density into
three classes by referring to extinction coefficient.

Visibility meters are often used to measure fog density.
In our work, however, we focus on driver’s perception rather

TABLE I

SPECIFICATIONS OF IN-VEHICLE CAMERA

Parameters Values

Resolution �∑ pixels
Frame rate 10 frame/second
Scan mode Interlace
Color Grayscale
Number of tones 256

TABLE II

SPECIFICATIONS OF MM-W RADAR

Parameters Values

Relative velocity -200 to 100 km/h
Azimuth angle range to
Processing cycle time 100 ms
Operating frequency 76 to 77 GHz
Modulation principle FM-CW
Azimuth detection method Electronic scanning
Range accuracy 3 %
Range resolution 1.5 m
Azimuth accuracy
Azimuth resolution

than on such physical visibility measures to determine classes
of fog density instead. The classes, which reflect human
perceptions, are dense, moderate, and light.

For this, two thresholds of extinction coefficient need to be
determined. We search two thresholds that give the minimum
number of misclassifications. Each threshold is defined so
that it meets

(9)

IV. EXPERIMENTS

In this section, we report the results of experiments to
show the performance of the proposed method. We explain
data collection, the preparation of training data, and the
evaluation of judgment by our method. In this experiment,
we used images in which vehicle areas are correctly clipped.
The image with the largest variance of brightness in the data
set was defined as the original image.

A. Data collection

We equipped a car with an in-vehicle camera and mm-
W radar. Two vehicles of different colors and shapes were
prepared as preceding vehicles. The data for the experiments
were collected while driving the vehicle in fair and foggy
conditions. The mm-W radar gives two kinds of information:
distance and relative speed to preceding objects. From the
information, our system finds the candidate position and size
of a preceding vehicle in a captured image. Tables I and II
show the specifications of the in-vehicle camera and the mm-
W radar used in this experiment. Detailed specifications of
the mm-W radar are described in [9].
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Fig. 9. Distribution of extinction coefficient calculated by our method from data set

TABLE III

JUDGMENTS BY PROPOSED METHOD AND HUMANS

Proposed method

Light Moderate Dense

Light 14 (88%) 2 (12 ) 0 ( 0 )
By humans Moderate 2 ( 9 ) 16 (73 ) 4 (18 )

Dense 0 ( 0 ) 2 ( 8 ) 23 (92 )

B. Preparation of training data

To learn the thresholds of the extinction coefficient for
fog density classification, the training data were classified
into the most appropriate classes by the following procedure
in which we used images captured while driving a vehicle.

First we prepared 10 data sets that met the following
requirements.

Each set includes 10 images.
The images contain one of the two kinds of preceding
vehicles described in Sec. IV-A.

Using these data sets, we conducted experiments in which
13 different subjects with valid driver’s licenses, participated.
Each subject was asked to conduct the following two steps
for each set:

Sort the 10 images in order of fog density
Classify the 10 images into three classes: “dense,”
“moderate,” or “light.”

Images that less than 10 subjects classified into the same
class were excluded for training, because they were consid-
ered difficult to classify uniquely by human perception. From
this, 63 of 100 images were used in the following processes.

From the results of this experiment, we obtained an appro-
priate class for each image that matches human perception.

C. Evaluating the judgments

To show the performance of our method, we compared
the judgments obtained by our method with human subjects.
The validation methodology to determine the extinction
coefficient thresholds was leave-one-out. Fig. 9 shows the
distribution of extinction coefficients for each class.

Table III shows the confusion matrix for judgment by the
proposed method and by human subjects. The numbers in
parentheses are the percentages of the element to the total

number of elements in each row; the percentages in diagonal
elements represent the precision rate for each class. The
overall precision rate for all classes was 84%. There were no
misclassifications between “light” and “dense.” The results
show that our method worked well, despite the variation of
vehicles.

V. DISCUSSIONS

A. Obtaining original images

Our method can recognize fog density when the original
image is given. In the experiment, it is assumed that we
already have the original image; however, in a practical
system, this information seems difficult to obtain. To get the
original image, we consider the following two approaches:

1) For the original image, we use the image that has
the largest variance of brightness among the vehicle
images captured while a car is running.

2) Obtain the original image by an inter vehicle commu-
nications system.

For 2), recently an inter-vehicle communications system has
been developed whose popularity will probably increase.
Now, it is possible to transmit an image sequence that
indicates traffic conditions to following vehicles [10][11].
Thus we believe that it will be able to transmit the original
image of own vehicle and that it can also be used as the
template image for vehicle clipping. This problem is one of
our future challenges.

B. Detection of brake lamps

The lighting of brake lamps is one noise that triggers
the decline of the method’s performance, because it signif-
icantly affects the variance of brightness. To improve the
performance of fog density classification, images that include
a vehicle with lit brake lamps should not be used when
calculating extinction coefficient.

By focusing on the change of variance, the detection of
lit brake lamps is possible. We checked the difference of
variances between unlit and lit brake lamps. The results are
shown in Fig. 10. When the brake lamps are turned on, the
variance drastically changes in a short time. From this result,
the change of variance is useful to detect lit brake lamps. In
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Fig. 10. Change of variance of brightness by lighting of brake lamps

addition, we consider that the relative speed between cars
obtained from mm-W radar is also useful.

VI. CONCLUSION

In this paper, we proposed a method to classify fog
density into three classes using an in-vehicle camera and
mm-W radar. We obtained promising results through exper-
iments using actual data collected while driving vehicles.
The recognition rate achieved 84% compared to the ground
truth obtained by human judgments. From the results, we
confirmed that the proposed method could make judgments
reflecting human perception.
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