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Abstract— This paper presents a LiDAR-based 3D Monte
Carlo localization (MCL) with an efficient distance field (DF)
representation method. To implement 3D MCL, high computing
capacity is required because the likelihood of many pose
candidates, i.e., particles, must be calculated in real time by
comparing sensor measurements and a map. Additionally, a
large-scale map is needed for allocation to embedded computers
since autonomous vehicles are required to navigate wide areas.
These make it difficult for 3D MCL implementation. This
paper first presents an efficient DF representation method while
considering the 3D LiDAR-based localization characteristics.
Because each DF voxel has the closest distance from occupied
voxels, swift comparison of the sensor measurements and map
can be achieved. Consequently, 3D MCL using the likelihood
field model (LFM) can be executed in real time. Furthermore,
this paper presents a method for improving the localization ro-
bustness to environmental changes without increasing memory
and computational cost from that of the LFM-based MCL.
Through experiments using the SemanticKITTI dataset, we
show that the presented method can efficiently and robustly
work in dynamic environments.

I. INTRODUCTION

An autonomous vehicle needs to localize its own 6DoF

pose exactly for achievement of precise automated driving.

The Bayes filter-based localization methods, in particular

Monte Carlo localization (MCL) [1], [2], are popular since

these methods are robust and can be easily implemented.

To implement 3D LiDAR-based MCL, a large computing

capacity is required because the likelihood of many pose

candidates, i.e., particles, must be calculated in real time by

comparing sensor measurements to a map. Additionally, a

large-scale map must be allocated to embedded computers

since autonomous vehicles must navigate wide areas. These

requirements make 3D MCL implementation difficult.

Almost all recent 3D localization methods used for auto-

mated driving are based on the optimization approaches [3],

[4] like the iterative closest point (ICP) [5] or normal distri-

butions transform (NDT) [6]. These optimization approaches,

particularly the NDT-based methods, enable registration of

3D LiDAR measurements to a map in real time. However,

they are not suitable for automated driving in terms of safety

because prior distribution estimated using motion sensors,

e.g., odometry, cannot be considered. In other words, the

optimization approaches are weak to noise and sometimes

drastically fail its estimate.
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Fig. 1. An example of an estimation by the presented method. The red
arrows and yellow points depict the particles and unmapped obstacles;
exactly categorizing the cars as unmapped obstacles.

This paper first presents an efficient distance field (DF)

representation method for real-time 3D MCL implementa-

tion. The DF is a voxel map and each voxel contains the

closest distance from occupied voxels [7]. The likelihood

field model (LFM) [2] can be efficiently calculated using

the DF.

For a straightforward DF implementation, a voxel map

memory that completely covers a target environment is

required. However, it is almost impossible to implement a

simple 3D DF since it requires an extremely large memory

cost. For example, to model 2000 m× 2000 m× 40 m size

environment with 0.1 m resolution, 64 GB memory usage

is required if each voxel has a 4 byte representation range.

In this work, we introduce two assumptions by considering

the characteristics of the 3D LiDAR-based localization to

efficiently represent the 3D DF. The assumptions are (1)

the voxels do not need to contain a large distance value,

and (2) most areas do not require modeling since there are

many areas that do not contain obstacles. Based on these

assumptions, we achieve the efficient 3D DF representation.

Through experiments, we show that these assumptions do

not cause fatal problems.

This paper also presents a method for improving local-

ization robustness. The LFM is efficient, however it does

not consider any environmental changes. As a result, the

LFM-based MCL is weak to environmental variations. The

presented method increases localization robustness by simul-

taneously estimating measurement classes while localizing

a vehicle pose. Where “measurement classes” categorize
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sensor measurements as those obtained from mapped or

unmapped obstacles as shown in Fig. 1. Additionally, the

simultaneous estimation can be achieved without increasing

memory and computational costs from that of the LFM-based

MCL.

The presented method was originally proposed in [8], [9].

However, the method was only applied to the 2D LiDAR-

based localization problem. This work extends the previous

work and applies the method to the 3D LiDAR localization

problem. Through experiments using the SemanticKITTI

dataset [10], we show that the presented method efficiently

and robustly works in dynamic environments.

The contribution of this work is two-fold.

• Presenting the efficient 3D DF representation method

• Presenting the simultaneous localization and measure-

ment class estimation method in the 3D LiDAR-based

localization problem

The rest of this paper is organized as follows. Section II

summarizes related work. Section III describes the efficient

3D DF representation method. Section IV describes the

simultaneous localization and measurement class estimation

method. Section V details the implementation methodology

using the SemanticKITTI dataset. Section VI shows the

presented method performance. Section VII concludes this

work.

II. RELATED WORK

Occupancy grid (or voxel) mapping is widely used for

modeling an environment [2]. However, straightforward en-

vironment modeling using a 3D voxel map quickly outgrows

the memory limitations of modern computers. 3D map rep-

resentation should be innovated for modeling a large-scale

environment.

An elevation map models an environment using a 2D grid

map with height values with the assumption that a ground

surface can be represented using a single surface [11]. Multi-

level surface maps relax the assumption [12]. Multi-volume

occupancy grid maps model an environment using a list of

occupied height areas and one of free height areas [13].

Recently in the robotics field, OctoMap, based on Octrees

[14], is widely used since it allows efficient modeling of an

environment by hierarchically partitioning a space [15]. In

[16], particle filter-based SLAM with octree data structure

is presented. However, these environment modeling methods

do not contribute to efficient DF representation.

The ICP can be applied if an environment is modeled

by point cloud. However, the process to find corresponding

points between map and measurement points, i.e., nearest

neighbor search (NNS), is time consuming. Although accel-

erated NNS methods, e.g., approximate NNS [17], [18], were

proposed, using the NNS for solving the on-line localization

problem is not practical since much of the NNS process has

to be executed in real time.

The NDT scan matching was proposed in [6], [19]. Al-

though the basic NDT algorithm is similar to the ICP, it

enables efficient search of the corresponding pairs between

source and target point clouds by approximately representing

point clouds with normal distribution. Additionally, it was

presented that the NDT is fast and has a wider valley

of convergence, more so than the ICP in [20]. Automated

driving demonstrations have been conducted using the NDT-

based localization [3].

Because the NDT is based on the optimization approach, it

cannot approximate its estimation uncertainty. In [21], [22],

the NDT is extended to the particle filter-based localization.

We also presented probabilistic localization methods using

the NDT [4], [23]. Although such probabilistic approaches

improve the localization robustness since these methods

can handle unconfident localization results, the NDT-based

methods still suffer from the non-smooth likelihood dis-

tribution due to discrete representation of NDT maps [9].

In [24], an NDT-based occupancy mapping method, called

NDT occupancy mapping, is presented. The NDT maps also

achieve higher accuracy at the cost of increased memory

utilization.

In [25], a map representation based on the decay rate

model, called DCT maps [26], is presented. The DCT maps

store the map parameters in the discrete frequency domain

and the continuous extension of the inverse discrete cosine

transform is used to convert the map parameters in the spacial

domain. In [25], the authors argued that the DCT maps

accurately model the environment more than state-of-the-art

mapping methods that do not require specific map resolution,

called Hilbert maps [27] and Gaussian process occupancy

maps [28]. Moreover, the DCT maps allow inferring the

measurement probabilities of the forward sensor model in

closed form. However, these map representation methods

have not been applied to represent DFs.

In [29], efficient incremental map updating methods for

maps suited for robotics applications including DFs are

presented. [30] presented a combined map representation

method using truncated and Euclidean signed DFs and the

authors argued that the map representation is better-suited

for robotic applications. A localization method using vector

DFs that contain a direction toward the closest occupied

cell is presented in [31]. Adaptively sampled DFs that

adaptively divide a space to efficiently represent the DFs

are presented in [32]. The idea used in this work is similar

to the method presented in [32]. However, we utilize this

representation to solve the 3D localization problem in large-

scale environments.

III. EFFICIENT 3D DISTANCE FIELD REPRESENTATION

This section describes an efficient DF representation

method. To achieve efficient representation, we use two

assumptions that are (1) the voxels do not need to contain a

large distance value, and (2) most areas do not need modeling

since there are many areas with no obstacles.

Figure 2 illustrates an overview of the 3D DF represen-

tation. An environment is first modeled using a voxel map

with resolution rM . Width, depth, and height sizes of the

voxel map are denoted as W , D, and H , respectively. Each

voxel contains a sub voxel map that represents an actual DF.
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Fig. 2. The 3D DF representation used. The red points and gray voxels are
map points and occupied voxels. rM and rm (rM > rm) are resolutions
of the voxel and sub voxel maps.

Algorithm 1 Get the distance from the 3D DF

Input: p: 3D point on the map coordinates

Output: d: Distance from the point to the nearest occupied

voxels containing the map point

iVM = getVoxelMapIndex(p)
iSVM = getSubVoxelMapIndex(p)
distanceList = getDistanceList(iVM)
d = distanceList(iSVM)
return d

We assume that the environment is modeled by a point

cloud and refer it to map points; plotted to the corresponding

sub voxel maps. If a point is included in a sub voxel map,

memory for the sub voxel map is allocated. Because voxels

containing no points are unallocated, an environment can be

efficiently modeled.

An example of the actual DF is shown to the right in Fig. 2.

The voxels of the sub voxel map each contain an unsigned

single byte of data. A list variable containing corresponding

distances to the unsigned data is also implemented for each

sub voxel map. As a result, the closest distance can be

efficiently obtained just by finding a corresponding voxel

in the sub voxel map.

Algorithm 1 shows the pseudo code to get the distance

from the 3D DF. A 3D point on the map coordinates, p,

is input and corresponding indices of the voxel and sub

voxel maps, iVM and iSVM, are first computed. Then, the

list variable corresponding to the iVM-th sub voxel map is

obtained. Finally, the closest distance, d, can be obtained

from the corresponding list.

Because the sub voxel maps contain the unsigned single

byte of data, the DF represents 256 value types. One value

must correspond to an invalid value to handle invalid local-

ization data. Hence, the DF is presented by 255 tones. If the

resolution rm is set to 0.1 m, the DF can represent up to

about 2.8 m. This value is adequate since a measurement

valiance of LiDAR is sufficiently smaller than the maximum

distance. This is detailed in Section VI-B.1.

IV. IMPROVING LOCALIZATION ROBUSTNESS

A. General localization problem

The general probabilistic localization problem described

in [2] is formulated as the posterior estimation problem:

p(xt|u1:t, z1:t,m) = ηp(zt|xt,m)
∫

p(xt|xt−1,ut)p(xt−1|u1:t−1, z1:t−1,m)dxt−1,
(1)

where x is a pose, u is a control input, z are sensor

measurements, m is a map, η is a normalization constant,

and t and 1 : t represent current and time sequence data.

p(zt|xt,m) and p(xt|xt−1,ut) are referenced as measure-

ment and motion models, respectively [2]. When the LFM

is used, the measurement model is denoted as:

pLFM(zt|xt,m) =

(

zhit
zrand

)T

·
(

phit(zt|xt,m)
prand(zt|xt,m)

)

,

(2)

where zhit and zrand are arbitrary constants satisfying zhit+
zrand = 1, and phit(·) and prand(·) model things related to

the measurement of the mapped obstacles and random noise,

respectively1.

phit(·) and prand(·) are respectively denoted as:

phit(zt|xt,m) =
1√
2πσ2

exp

(

−d(zt,xt,m)2

2σ2

)

, (3)

prand(zt|xt,m) = unif(0, R), (4)

where σ2 is a measurement variance, R is the maximum

measurement range, d(·) returns the closest distance from a

scan point which is transformed based on the given pose, xt,

to obstacles existing on the map, m, and unif(·) is a uniform

distribution within a given range.

B. Simultaneous localization and measurement class estima-

tion

As shown in equation (2), the LFM does not consider

any environmental changes. The simultaneous localization

and class estimation method presented in [8], [9] introduces

class of sensor measurements, c, as a hidden variable.

Where “class” categorizes the sensor measurements as those

obtained from mapped or unmapped obstacles. In the model,

we assume that the sensor measurements depend on the

measurement classes.

The method estimates the following joint posterior distri-

bution:

p(xt, ct|u1:t, z1:t,m). (5)

This joint distribution is factorized using the multiplication

theorem as:

p(xt|u1:t, z1:t,m)p(ct|xt,u1:t, z1:t,m). (6)

1In [2], a thing that the measurement is to be the maximum value is
considered, however we do not consider the thing since a 3D point cloud
does not usually have such measurements.
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The first term of equation (6) can be deformed to the same

equation shown in equation (1). However, the measurement

model can be re-written using the law of total probability as:

p(zt|xt,m) =
∑

ct∈C

p(zt|xt, ct,m)p(ct), (7)

where C is a list of the measurement classes and is denoted

as C = {mapped, unmapped}. We refer p(zt|xt, ct,m)
to class conditional measurement model (CCMM) since the

measurement classes are given as a condition.

The measurement model with the mapped condition is

modeled using the LFM:

p(zt|xt, ct = mapped,m) = pLFM(zt|xt,m). (8)

The measurement model with the unmapped condition is

modeled using the exponential distribution as:

p(zt|xt, ct = unmapped,m) =
λ exp(−λrt)
1− exp(−λR) , (9)

where λ is the hyperparameter and rt is the current measure-

ment range. Both models can be calculated without complex

processes. Therefore, the computational and memory costs

are equivalent to those of the LFM.

Because the CCMM allows us to explicitly consider en-

vironmental changes via the unmapped class measurement

model, localization robustness can be improved even though

the LFM is used to model the mapped class measurement.

However, this yields a trade-off problem between accuracy

and robustness. We discuss this problem in Section VI-C.

V. IMPLEMENTATION

In this work, we used the SemanticKITTI dataset [10] that

provides semantic labels of the 3D LiDAR measurements

included in the KITTI odometry dataset [33] to evaluate the

presented method. This section describes the methodology

of implementation and evaluation using this dataset.

A. Building 3D distance field

The SemanticKITTI dataset contains annotated LiDAR

measurements and the ground truth vehicle trajectories. The

object classes include static and dynamic classes, e.g., per-

son, bicycle, road, and building. We plot only measurements

obtained from the static objects according to the ground truth

trajectory and build the map points. Note that we assumed

that the ground surface is flat. The voxel grid filter with

a 0.1 m resolution is applied to the map points to remove

unnecessary redundant points.

The 3D DF is built based on the map points. The resolu-

tions of voxel and sub voxel maps were set as: rM = 5 m
and rm = 0.1 m. To build the DFs, we used the algorithm

described in [34].

B. Control input

We simulate a noisy control input, denoted as ut =
(∆dt,∆θt), using the ground truth trajectory. Movement

amounts according to xy plane, ∆dGT
t , and yaw axis, ∆θGT

t ,

are first calculated using the ground truth. Then, the noisy

control input is simulated as:

∆dt ∼ N (γ∆d∆d
GT

t , σ2

∆d), (10)

∆θt ∼ N (γ∆θ∆θ
GT

t , σ2

∆θ), (11)

where N (a, b2) is Gaussian with mean a and variance b2,

and γ and σ2 are arbitrary constants to add the noise. These

parameters were set as: γ∆d = 0.97, γ∆θ = 1.03, σ2

∆d =
0.1 m2, and σ2

∆θ = 1.72 degree2.

C. Motion model

The vehicle pose, x, is composed of a 3D point, x, y, and

z, and roll, pitch, and yaw angles, φ, ψ, and θ. The state of

the particles is also composed of these variables. To update

the pose of the particles, the following motion model is used:
















xt
yt
zt
φt
ψt
θt

















=

















xt−1

yt−1

zt−1

φt−1

ψt−1

θt−1

















+



















∆d̂t cos θt−1

∆d̂t sin θt−1

∆ẑt
∆φ̂t
∆ψ̂t
∆θ̂t



















, (12)

∆d̂t ∼ N (∆dt, α1∆d
2

t + α2∆θ
2

t ),

∆ẑt ∼ N (0, α3∆d
2

t + α4∆θ
2

t ),

∆φ̂t ∼ N (0, α5∆d
2

t + α6∆θ
2

t ),

∆ψ̂t ∼ N (0, α7∆d
2

t + α8∆θ
2

t ),

∆θ̂t ∼ N (∆θt, α9∆d
2

t + α10∆θ
2

t ),

(13)

where α1 ∼ α10 are arbitrary constants. These constant

values were experimentally determined.

D. Likelihood calculation

We first assume that each element of the sensor mea-

surements, z = (z1, z2, ..., zK), are independent, where

K is the number of the sensor measurements. The sensor

measurement classes are denoted as c = (c1, c2, ..., cK),
where ck is corresponding class to z

k. By assuming the

independence, the CCMM is re-written as:

p(zt|xt, ct,m) =

K
∏

k=1

p(zkt |xt, ckt ,m). (14)

From equation (7), the likelihood of the i-th particle is

calculated as:

ωit =

K
∏

k=1

∑

ct∈C

p(zkt |xt, ckt ,m)p(ckt ). (15)

In equation (15), we need to define prior probability over

ckt , however no conditions are given to estimate the prior.

Thus, we assume that the prior probability is uniform, namely

p(ckt = mapped) = p(ckt = unmapped) = 0.5. The

parameters shown in equations (2), (3) and (9) were set as:

zhit = 0.95, zrand = 0.05, σ2 = 0.01 m2, λ = 0.03, and

R = 120 m.

The likelihood calculation process can easily be paral-

lelized. In implementation, we parallelize this process to four

threads using OpenMP [35].
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E. Pose estimation and re-sampling

After calculating the particles’ likelihood, they are first

normalized. Then, the current vehicle pose is estimated as

the weighted average of the particles’ state. The estimated

errors are computed by comparing the estimated pose and

the ground truth.

Before re-sampling the particles, the effective sample size

(ESS) [36] is calculated as:

ESS =
1

∑M

i=1

(

ωit
)2
, (16)

where M is the number of the particles and was set to M =
1000. If ESS < M/2, then re-sampling is performed.

When the re-sampling is performed, 10 % random parti-

cles are injected and denoted as:

x
i
t ∼ N (xt,Σrand), (17)

where xt is the current estimated pose and Σrand =
diag(σ2

x, σ
2
y, σ

2
z , σ

2

φ, σ
2

ψ, σ
2

θ). These variables were also ex-

perimentally determined. This random sampling injection

increases localization robustness to failures due to inaccurate

motion modeling.

F. Measurement class estimation and evaluation

The simultaneous estimation method presented in this

paper estimates not only the vehicle pose but also the sensor

measurement classes. The posterior distribution over the

measurement classes is denoted as:

p(ct|xt,u1:t, z1:t,m) = ηp(zt|xt, ct,m)p(ct) (18)

With implementation, the measurement class is classified

to unmapped if p(ct = unmapped) > 0.9. To evaluate the

class estimation accuracy (CEA) measurement, the semantic

labels included in the SemanticKITTI dataset are used. The

CEA is denoted as:

CEA =

∑K

k=1
1(ck = ĉk)

K
(19)

where 1(·) is an indicator function equal to one when the

condition within the bracket is true, and zero otherwise, and

ck and ĉk are the estimated and ground truth classes.

VI. EXPERIMENTS

A. Comparison methods

We use two comparison methods; the LFM-based MCL

and NDT.

1) LFM-based MCL: The LFM-based MCL estimates

the posterior shown in equation (1). The LFM shown in

equation (2) is used for calculating the particles’ likelihood.

The same parameters described in Section V are used.

2) NDT: The point cloud library [37] that implements the

NDT presented in [19] is used. Resolution of the NDT map

was set to 1 m. The voxel grid filter with 2 m resolution is

applied to the sensor measurements before the registration.

The initial pose for the registration is estimated using the

motion model. If the NDT has not converged, the initial pose

is used as the estimated pose.
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Fig. 3. Likelihood calculation examples of phit(·) shown in equation (3)
using the 3D DF.

B. Results

1) Likelihood calculation using 3D DF: Figure 3 shows

likelihood calculation examples of phit(·) shown in equa-

tion (3) using the 3D DF. Kullback-Leibler divergence (KLD)

denoted as:

KLD =

∫

p(d) ln
p(d)

q(d)
dd, (20)

is calculated to evaluate the similarity of two distributions:

p(d) =

{

phit(zt|xt,m) (d ≤ 2.8)

10−30 (otherwise),
(21)

q(d) = max(phit(zt|xt,m), 10−30), (22)

where p(·) is the likelihood distribution calculated using the

3D DF. If the KLD value is quite small, the two distributions

are regarded as almost the same.

KLD was zero when the measurement standard deviation,

σ, was set to 0.1 m and 0.2 m. Standard deviation of

typical LiDAR measurements is less than 0.2 m. Therefore,

we conclude that the 3D DF has enough specification to

accurately calculate the LFM.

2) Map memory usage: Table I shows memory usage in

each map representation method and environment size. We

chose seven sequences from the KITTI odometry dataset for

the evaluation. It should be noted that the SemanticKITTI

dataset only opens the semantic labels from the sequences

00 to 10, other labels are only used for public evaluation.

The map points correspond to a 3D point cloud map

described in Section V-A. The presented distance field (PDF)

described in Section III, NDT, and straightforward DF (SDF)

map representations are compared. The SDF is a simple

voxel map with a resolution of 0.1 m and floating point

resolution.

A voxel of the NDT map contains mean, µi ∈ R3,

and covariance matrix, Σi ∈ R3×3. Because the covariance

matrix is symmetric, it can be represented using six elements.

Hence, one NDT voxel contains nine elements. To perform

smooth registration, at least two NDT maps are needed and

must be overlapped. Thus, memory usage for the two NDT

maps is computed for the comparison.

The memory usage of the PDF and NDT is significantly

smaller than that of the map points and SDF. In particular,

with sequence 01 being the largest environment, the PDF

could model it with very little memory usage. Figure 4

is the map points of sequence 01. To model such narrow
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TABLE I

MAP MEMORY USAGES AND ENVIRONMENT SIZES IN GB AND METERS. THE PERCENTAGE SHOWN IN THE PDF ROW IS THE ACTIVE VOXEL RATE.

Sequence 01 03 04 06 07 09 10

Map points 1.34 1.14 0.09 0.22 0.13 2.23 1.74

PDF 0.15 (1.7 %) 0.04 (12.6 %) 0.02 (37.4 %) 0.02 (17.5 %) 0.04 (21.2 %) 0.09 (9.5 %) 0.04 (11.7 %)
NDT 0.70 0.03 0.01 0.01 0.02 0.07 0.03
SDF 39.53 1.49 0.31 0.69 0.92 4.09 1.60

Size 1908 x 1312 x 40 573 x 302 x 22 106 x 498 x 14 122 x 563 x 25 295 x 294 x 27 564 x 672 x 27 776 x 274 x 19

100 m

Fig. 4. The map points of the sequence 01.

wide environments, the presented 3D DF representation is

effective.

Table I also shows the active sub voxel rate in the PDF

row. The rate is denoted as Nactive/WDH , where Nactive is

the number of active sub voxels that contains the map points.

As can be seen from the Table I, the active sub voxel rate is

quite small particularly in sequence 01. Based on the results

shown in Section VI-B.1 and this section, we conclude that

the assumptions used to efficiently represent the 3D DF do

not cause fatal localization problems.

3) Position and angle estimation errors: Table II shows

position and angle estimation errors by the presented method

(PM) described in Section IV-B, LFM-based MCL (MCL),

and NDT. The position and angle errors are denoted as:
√

∆x2 +∆y2 and |∆θ|. This table also shows the static

points rate (SPR) that is the rate of mapped points included

in the 3D LiDAR measurements and the CEA by the PM.

The NDT was unusually accurate; however it was not

robust to an inaccurate initial guess. Because the NDT is

based on the optimization approach, it cannot consider the

prior distribution over the initial pose estimated using the

motion model like the Bayes filter. Consequently, the NDT

sometimes yielded drastic estimation errors.

Overall, estimation accuracy by the MCL is the most

accurate. However, the PM more accurately estimated the

vehicle pose in sequences 06 and 07.

As can be seen from the average and minimum SPRs,

sequences 06 and 07 contain more dynamic obstacles than

other sequences. Figure 5 shows the position and angle

estimation errors with the SPR and CEA in sequences 06

and 07. The bottom plots in Fig. 5 show errors in the control

input, namely the moving amount differences computed

between the ground truth and simulated noisy odometry.

Because the LFM does not consider any environmental

changes, it could not cope with highly dynamic changes in

the environment. Because the CCMM used in PM explicitly

considers environmental changes, it coped well with the

dynamics. However, the LFM resulted in more accurate es-

timation than PM in low dynamic environments. We discuss

this reason in VI-C.

4) Computation time: Table III shows computation times

for PM, MCL, and NDT. For the PM and MCL, time for

the likelihood calculation and pose estimation was measured.

For the NDT, time for the point cloud registration and

pose estimation was measured. All processes were performed

using a desktop computer (Intel(R) Xeon(R) CPU E5-1650

v3 @ 3.50 GHz).

The NDT computation time was usually enough for real-

time localization, i.e., less than 100 msec. When the initial

guess is accurate, the NDT achieved fast registration. How-

ever, the worst computation time was quite slow.

The MCL was a bit faster than the PM, however these

computation times were almost the same. The PM is robust

to environmental changes more than the MCL. Additionally,

the PM and MCL map usage is identical since they use the

same map. Therefore, we conclude that the PM is suitable

for automated driving in dynamic environments.

C. Discussion

As we mentioned in V-D, the CCMM explicitly considers

environmental changes. Because the measurement model

with the unmapped class is modeled using exponential dis-

tribution up to the maximum measurement range, it con-

siders the probability where obstacles are measured within

the entire measurement range. Consequently, the CCMM

has similar performance to the M-estimator utilized in the

optimization approach to decrease outliers [38].

In the M-estimator, corresponding pairs between source

and target point clouds with a large residual error are ignored

in the cost function calculation to increase robustness to

outliers. However, large estimation errors cannot be com-

pensated since all correct pairs have a large residual error.

Consequently, the trade-off problem between accuracy and

robustness exists.

The CCMM also has this trade-off relationship. In the

experiments, because we simulated noisy odometry as shown

in the bottom of Fig. 5, the initial guess was sometimes

inaccurate. As a result, the estimation accuracy using the

CCMM was also inaccurate even though environmental

changes are quite small.
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TABLE II

POSITION / ANGLE ESTIMATION ERRORS BY PM, MCL, AND NDT, STATIC POINTS RATE (SPR), AND CLASS ESTIMATION ACCURACY (CEA). UNITS

OF THE POSITION AND ANGLE ERRORS ARE METERS AND DEGREES.

Sequence 01 03 04 06 07 09 10

Ave 0.20 / 0.20 0.17 / 0.46 0.10 / 0.12 0.12 / 0.21 0.13 / 0.36 0.14 / 0.28 0.15 / 0.62
PM Std 0.35 / 0.21 0.10 / 0.77 0.07 / 0.16 0.06 / 0.31 0.09 / 0.60 0.09 / 0.39 0.13 / 0.92

Min 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.01 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Max 5.25 / 3.23 0.66 / 8.16 0.58 / 1.84 0.60 / 4.71 0.87 / 8.62 0.91 / 4.32 0.98 / 7.67

Ave 0.15 / 0.17 0.12 / 0.54 0.04 / 0.19 0.11 / 0.29 0.15 / 0.55 0.07 / 0.05 0.06 / 0.33
MCL Std 0.24 / 0.15 0.09 / 0.98 0.04 / 0.19 0.24 / 0.63 0.11 / 0.80 0.05 / 0.48 0.06 / 0.73

Min 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Max 3.45 / 2.19 0.58 / 9.34 0.26 / 1.44 2.39 / 6.72 0.91 / 7.00 0.42 / 8.30 0.58 / 6.87

Ave 0.36 / 0.76 0.30 / 1.39 0.17 / 0.52 1.38 / 2.51 0.10 / 0.47 0.12 / 0.59 0.07 / 0.34
NDT Std 0.63 / 0.04 0.51 / 0.14 0.10 / 0.02 7.49 / 0.26 0.08 / 0.03 0.07 / 0.04 0.04 / 0.02

Min 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Max 5.66 / 9.04 4.53 / 14.76 1.73 / 8.29 13.40 / 18.55 2.44 / 10.34 2.03 / 12.41 1.88 / 10.12

Ave 95.92 % 95.74 % 96.64 % 89.26 % 87.08 % 93.79 % 95.92 %
SPR Std 2.46 % 2.96 % 2.30 % 6.85 % 7.81 % 4.74 % 3.88 %

Min 84.75 % 80.62 % 89.79 % 59.37 % 57.97 % 65.66 % 70.22 %
Max 99.66 % 99.11 % 98.81 % 97.48 % 98.33 % 99.29 % 99.67 %

Ave 97.19 % 97.00 % 97.10 % 90.47 % 93.61 % 96.28 % 96.29 %
CEA Std 1.32 % 1.75 % 1.75 % 6.16 % 4.59 % 2.59 % 3.93 %

Min 91.26 % 86.09 % 90.68 % 62.13 % 62.23 % 81.83 % 70.34 %
Max 99.57 % 99.30 % 98.82 % 97.61 % 99.24 % 99.37 % 99.66 %

SPR CEA NDT MCL PM

Angle error Distance error
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Fig. 5. Position (top) and angle (middle) estimation errors with SPR and CEA and control input errors (bottom) in sequences 06 (left) and 07 (right).

TABLE III

COMPUTATION TIMES IN MILLISECONDS.

Ave Std Min Max

PM 88.1 4.8 77 122
MCL 86.7 3.9 73 113
NDT 94.0 61.1 37 432

However, the robustness against environmental changes is

significantly important for automated driving, in particular

LiDAR field of view is limited as described in [9]. Thus,

we consider that the CCMM is more effective for automated

driving in dynamic environments.

VII. CONCLUSION

This paper has presented an efficient 3D DF representation

method. Because the DF enables efficient LFM calculation,

real-time 3D MCL could be implemented. Additionally,

this paper has presented the robust likelihood calculation

method that simultaneously estimates sensor measurement

classes while localizing the vehicle pose. We evaluated the

presented methods using the SemanticKITTI dataset and

showed that the presented method efficiently and robustly

works in dynamic environments.

Our future work is implementation of localization failure

detection and reliability estimation methods presented in [39]
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and [40] using the efficient DF representation method.
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