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Abstract— Interaction detection between vehicles and vulner-
able road users (e.g. pedestrians and cyclists) is important for
e.g. safety control and autonomous driving. However, there are
many challenges for automatically detecting interactions, such
as the ambiguity of defining when interaction is required in
dynamic traffic activities among different road users and the
lack of labeled data for training a machine learning detector. To
overcome the challenges, we introduce a way to define whether
or not interaction is required in various traffic scenes and create
a large real–world dataset from a very challenging intersection.
A sequence-to-sequence method that uses the object informa-
tion and motion information of the traffic scenes extracted
by a state-of-the-art object detector and from optical flow,
respectively, is proposed for automatic interaction detection.
The proposed method generates a probability of interaction
at each short interval (< 0.1 s) that represents the changing
of interaction along a sequence. We obtain a baseline model
that differentiates no interaction from interaction on the basis
of the location and road user type from the detected object
information. Compared with the baseline model, the empirical
results of the proposed method demonstrate very accurate
predictions for vehicle turning sequences with varying length.

I. INTRODUCTION

Statistics show that accidents between vehicles and vulner-
able road users (VRUs, e.g. pedestrians and cyclists) often
occur at intersections [1], [2]. Monitoring and understanding
how vehicles and VRUs interact with each other at inter-
sections in consideration of collision risks and smoothness
are critical for safety control, autonomous driving and traffic
management [3]. However, manually analyzing the interac-
tions between them based on observations is not feasible
for busy intersections on a daily basis. Nowadays, as the
ubiquity of traffic data and the development of computer
vision techniques, there is a high demand for automatically
recognizing interactions from video data, specifically detect-
ing interactions between vehicles and VRUs from various
traffic scenes (see Fig. 1), and then differentiating dangerous
behavior (e.g. violation of traffic rules) from normal behavior
(e.g. following traffic rules and acting out of courtesy).
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There are a lot of studies for road user detection using
computer vision techniques [4], [5], [6]; pedestrian cross-
walking prediction [7], [8], [9]; intention detection at inter-
sections [10], [11], [12] and trajectory prediction [13], [14],
[15]. Few studies have been done in the regard to traffic
interactions. The most relevant studies are that, for example,
[16] uses trajectories extracted from videos to automatically
analyze vehicle–pedestrian conflicts and [17] proposes a
similar framework to diagnose the safety issues in vehicle–
bicycle interactions using computer vision analysis. These
studies focus on a more severe interactive level (conflicts).
Such conflict interactions only account for a small volume of
the total traffic activities and may not cover other less severe
interactions. They only consider limited road user types, e.g.
vehicle–pedestrian or vehicle–bicycle. In real–world traffic
situations at big intersections other heterogeneous road users
are often involved. On the other hand, the analyses highly
depend on the quality of trajectory data. But the acquisition
of trajectory data is often time consuming and costly.

To achieve automatic interaction detection between vehi-
cles and VRUs, the following challenges have to be tackled:
(1) how to define a boundary to determine if interactions
occur between vehicles and VRUs in traffic scenes of very
dynamic activities and various behavior patterns among
different types of road users; (2) how to efficiently acquire,
process, and label a large amount of video data for training
a machine learning model; (3) how to handle the changing
of interaction along a sequence of varying duration.

With the consideration of the above challenges, we pro-
pose an end-to-end method for detecting interactions among
heterogeneous road users at intersection directly from traffic
video data. In our work, various activities among all road
user types were recorded using a camera at an extremely
busy left-turning intersection in Japan. Namely, six types of
traffic related objects are considered: pedestrians, cyclists,
motorcycles, cars, buses and trucks. As the driving direction
in Japan is on the left side, in this intersection, even governed
by traffic signals VRUs often need to directly interact with
left-turning vehicles. Different from the works mentioned
above, there is no need to track the trajectories of the road
users in the image processing of the recording. We apply a
state-of-the-art object detector called M2Det [6] to extract
object information and the dense optical-flow algorithm [18]
to extract their motion information in consecutive frames.
Our contributions are summarized as follows:

1 Providing a definition for interaction regarding a vehicle
left-turning motion with VRUs at an extremely busy
intersection in a Japanese metropolis and creating a
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Fig. 1: Automatically detecting interaction between vehicles and vulnerable road users at an intersection using sequence-to-
sequence modeling (b) (c) with features extracted by object detection and optical flow from video data (a). At each frame, a
probability is generated to predict the interaction and the sequence-level prediction is the voted summation of the frame-level
predictions. A binary mask is applied to filter the traffic data out of the left-turning intersection.

large interaction dataset with sequence-level labels;
2 Proposing a sequence-to-sequence method that can

automatically detect interaction between vehicles and
VRUs at a sequence-level using the object information
and motion information extracted from video data;

3 Constructing a hybrid model that uses the road users’
location and type from object detection to prevent
false positive interaction detection (i.e. no VRUs on
site during the vehicle left-turning) in the sequence-to-
sequence method.

In this work, several ablative models are carried out to
verify the contribution of the object information and the
motion information. With the consideration of the dynamics
of interactions over time at a short interval (< 0.1 s), three
voting schemes are investigated to analyze the impact of the
interval interactions on the overall interaction.

II. METHODOLOGY

Our framework consists of three major components for
detecting interaction between vehicles and VRUs: Feature
Extraction, Sequence Processing, and Sequence-to-Sequence
Modeling, see Fig.1.

A. Feature Extraction

In the feature extraction component, object information
and their motion information are extracted in parallel for
each road user at the given intersection from the video data.

The object information contains road users’ type and their
location. To acquire object information, a state-of-the-art
object detector called M2Det that uses multi-level feature
pyramid network for detecting objects of different scales [6]
is leveraged for detecting all the aforementioned road users
at each frame. We use six channels to store the road user
type information and each channel is dedicated to one of the
types. The location of the detected objects is mapped on each
frame using the approximate mass point (the lower middle
point of the bounding box).

Without tracking the objects detected from the previous
frame to the next frame, the object information alone is
not adequate for interaction detection between vehicles and
VRUs. Nevertheless, tracking multiple objects from frame to
frame is very challenging due to, e.g. abrupt object motion,
change appearance and occlusions [19]. Most importantly,
the failure of tracking might directly lead to a failure of
interaction detection for the objects involved. To circumvent
the challenges, we use optical flow to capture the motion
of road users. Optical flow describes the distributions of
velocities of moving pixels in two consecutive images [18].
In other words, moving objects can be captured by optical
flow and static objects or background will be ignored. We
use the dense optical-flow algorithm to map the displacement
of moving objects and remove the static background infor-
mation [20]. The orientation of motion is encoded by color
and the velocity is encoded by color intensity.

B. Sequence Processing

Following the feature extraction component, the object
information and the motion information are fed into a
sequence-to-sequence model for interaction detection. Due
to the very different duration of each sequence (see Fig. 4),
e.g. some vehicles may have to wait for a long time for
pedestrians crossing the street, the sequence-to-sequence
model should be able to cope with various sequence lengths.
To tackle this problem, we resort to a similar approach
proposed in [21], [22] that uses a sliding window to divide
long sequences into shorter sequences to capture both long
and short interactions. We name the sub-sequences divided
by the sliding window from a complete sequence as clips.

In order to train a fully sequence-to-sequence model, the
sequence-level label is duplicated and associated with each
frame in every clip. The modeling problem is defined as:
for clip n received Xn = {Xn

1 , · · · , Xn
w} as input of the

object information and motion information, and predict the
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Fig. 2: The CNN in the pipeline for learning latent features
from object and optical flow sequence at each frame.

interaction at each frame Ŷn = {Ŷ n
1 , · · · , Ŷ n

w }, where n
stands for the index of the clip for the given sequence and
n ∈ N , N is the total number of clips, and w stands for the
sliding window size. For short,

Ŷn = f(Xn). (1)

C. Sequence-to-Sequence Modeling

The sequence-to-sequence function f(·) defined by Eq. (1)
manipulates both convolutional neural network (CNN) and
Long Short-Term Memories (LSTMs) neural networks for
learning spatiotemporal features from object information and
motion information. The right part of Fig. 1 denotes the
overall structure of the pipeline.

At the first step, each frame of the extracted information
is passed through the CNN for learning the spatial features.
The CNN has three layers with each layer followed by a
Maximum Pooling (MP) and a Batch Normalization (BN).
The output of the CNN is a flattened feature vector of each
frame. Fig. 2 demonstrates the detailed structure of the CNN.

In the following step, all the parsed frames in a given clip
are timely distributed and concatenated as the input for the
following two LSTMs, which are used to learn the temporal
features across the frames.

Finally, the output of the LSTMs are firstly passed through
a fully connected layer (FC) with a rectified linear unit
(ReLU) activation function and then another FC with a
sigmoid activation function. The final output is a probability
vector for interaction at each frame, see Fig. 1.

The sequence-to-sequence function f(·) is trained by opti-
mizing the binary cross-entropy loss between the duplicated
ground-truth label and the predicted label at each frame.

As the ground-truth label only represents the sequence-
level interaction, the interaction at each frame can change
and may differ from the ground-truth label. Therefore, the
sequence-level prediction is the voted summation of the
frame-level predictions, denoted by Eq. (2), where δ(t)
stands for the voting function regarding frame index t and
T = Nw, which is the total number of frames for the given
sequence. We use Ŷ ∗ to denote the voted sequence-level

Fig. 3: Voting scheme in relation to time axis, e.g. a vehicle
left-turning sequence in 30 frames.

prediction for the whole sequence.

Ŷ ∗ =

N∑
n=1

nw∑
t=nw−w+1

δ(t)Ŷt. (2)

Critical moments often happen when road users come
close to each other in time and more attention is required
[23]. Hence, we explore different ways to emphasize the
impact from the later frames. Besides using an average voting
scheme, we investigate two other voting schemes that slowly
and quickly increase the weights along the time axis. We call
them as slow-asc. and fast-asc., see Eq. (3).

δ(t) =


1/T avg.

t/ log(t+e)∑T
t=1 t/ log(t+e)

slow-asc.

1/(T−t+1)∑T
t=1 1/(T−t+1)

fast-asc.

(3)

The average voting scheme weights each frame-level pre-
diction equally, and the slow-ascending and fast-ascending
voting schemes increase the weights gradually and quickly
along the time axis, respectively, see Fig. 3.

III. DATASET

The concept of interaction with VRUs is similar to conflict
[24]. While interaction can range from collision to negligible
conflict risk [25]. We define interaction that occurs as if the
left-turning vehicle drives in an intersection and any VRUs
approach or move on the intersection space, in order to
avoid any conflicts that might happen at any time during
the vehicle’s turning, they adapt their movement (velocity
and orientation) accordingly. Otherwise, if the target vehicle
drives in an undisturbed manner with VRUs in its neighbor-
hood (if there are any), interaction is not required. It is worth
mentioning that in the first step of our study, the interaction
for car following and road users’ situation awareness are
not considered at the moment via observations from static
camera. They will be considered in our future work.

To test the interaction detection method, we created a
large real-world interaction dataset from an extremely busy
intersection in a Japanese metropolis. We recorded approx-
imately 24 hours of traffic footage from an oblique view
at one of the major intersections in Nagoya from 11 a.m.
23th to 11 a.m. 24th, April 2019. The video was taken
at 1600 × 1200 pixels at 30 fps using a camera1 installed

1Panasonic WV-SF781L
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(a) The distribution of sequence
length

(b) The sequence lengths of no
interaction vs. interaction

Fig. 4: Sequence lengths of the dataset

TABLE I: The distribution of interactions in each set

Class Training Validation Test Total
Interaction 328 118 98 544
No interaction 328 88 137 553

inside a building adjacent to the intersection and recorded in
H.264 format. In this work, we used a 12-hour sub-footage
from 11 a.m. to 6 p.m. and from 6 a.m. to 11 p.m. when
there was enough traffic and ambient light to perform stable
image processing. Two annotators manually detected 1097
scenes where vehicles turned left and extracted the time
intervals from when the vehicles entered the intersection
until it exited. However, it is difficult to determine whether
the interaction actually occurs from external observations.
They also subjectively determined whether or not interactions
required in each scene, agreed with each other, and labeled
each scene “no interaction” or “interaction”. We obtained 544
sequences that require interactions and 553 sequences that
require no interaction. Without sacrificing the data quality,
the video data has been down-sampled from the original
frame rate to 15 fps (the interval is less than 0.1 s) with the
consideration of a stable performance for optical flow and
reducing the computational cost. The processed data will be
shared for further research purpose.

The dataset is very challenging for automatic interaction
detection between vehicles and VRUs. Due to the varying
traffic situations, the length of the left-turning sequences
has a very long-tail distribution: ranging from 40 frames
to 1500 frames, see Fig. 4a. In addition, the sequence
lengths of requiring no interaction (Mean = 148.6, std. =
147.3) are significantly shorter (Mann–Whitney U-Test, N =
65863, p << 0.01) than the ones requiring interaction
(Mean = 320.1, std. = 243.8). Because of the wide variation
of sequence lengths in both classes, shorter sequences do not
necessarily indicate no interaction required, see Fig. 4b.

We split the dataset into training, validation and test sets
for training and evaluating the performance of the proposed
method. The training set has balanced samples for an unbi-
ased training, while the validation and test sets are slightly
skewed in a reversed way for a more challenge validation
setting. Table I lists the statistics for each set.

IV. EXPERIMENT

A. Evaluation Metrics

We apply Precision, Recall, F1 score and Accuracy to
measure the performance of the interaction detection for the

TABLE II: The detection results for the models using differ-
ent information and voting schemes

Model Input Voting Prec. Recall F1 Accu.

baseline m2det — 0.791 0.583 0.536 0.583
s+m2-avg m2det avg. 0.767 0.728 0.728 0.728
s+m2-slow m2det slow-asc. 0.760 0.736 0.738 0.736
s+m2-fast m2det fast-asc. 0.783 0.779 0.780 0.779
s+op-avg op. avg. 0.898 0.885 0.886 0.885
s+op-slow op. slow-asc. 0.897 0.889 0.890 0.889
s+op-fast op. fast-asc. 0.860 0.860 0.860 0.860
s+m2+op-avg m2det+op. avg. 0.917 0.911 0.911 0.911
s+m2+op-slow m2det+op. slow-asc. 0.926 0.919 0.920 0.919
s+m2+op-fast m2det+op. fast- asc. 0.865 0.864 0.862 0.864
hybrid m2det+op. slow-asc. 0.929 0.923 0.924 0.923

two classes on the test set. Given the unbalanced number of
sequences of no interaction and interaction in test set, we
report the weighted average values for all the measurements.

B. Experiment Setting

In all the experiments, after applying a mask (see Fig. 1)
to filter other traffic out of the intersection and resizing,
the frame size of object information is (200, 100, 6) and the
frame size of motion information is (200, 100, 3); The sliding
window size for each clip is set to 8; The three-layer CNN
has kernel sizes (4, 4, 4) and output dimensions (16, 8, 8); the
hidden units of the LSTMs are set to 64 and 32, respectively;
The output dimension of the first FC is set to 16.

C. Compared Methods and Hybrid Model

We implement a baseline model that detects interaction
based on the co-existence of VRUs. If the left-turning
vehicle encounters no VRU, there may be no interaction
required. Otherwise, interaction is required. It is obvious
that the baseline model is 100% accurate for detecting no
interaction sequences. This leads us to build a hybrid model:
calibrating the best sequence-to-sequence model using the
baseline model only for sequences with no VRU, if there
are any such false positive cases.

Ablative models are carried out to verify the contribution
of the object information extracted by object detection using
M2Det [6] and motion information extracted by optical
flow [18], see Section II-A. The s+m2 models only take
object information as input and the s+op models only take
motion information as input. The proposed sequence-to-
sequence s+m2+op models take both object and motion
information. Those two types of information are channel-
wisely combined. Meanwhile, avg., slow-asc. and fast-asc.
voting schemes (see Section II-C) are compared across all
the sequence-to-sequence models.

D. Quantitative Results

Table II lists the detection results for the models using
different information and voting schemes. Besides, Table III
lists the confusion matrices for the baseline, the sequence-
to-sequence models with their respective best voting scheme
as well as the hybrid model.
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TABLE III: The confusion matrices for the baseline, the
sequence-to-sequence models with their respective best vot-
ing scheme, as well as the hybrid model. True positive (top
left) and true negative (bottom right) values are in boldface.

Class baseline s+m2-fast s+op-slow s+m2+op-slow hybrid
Int. 98 0 76 22 92 6 95 3 95 3

No int. 98 39 30 107 20 117 16 121 15 122

Compared with the baseline model, profound improvement
measured by Recall, F1 and Accuracy can be found by the
sequence-to-sequence models with all the voting schemes.
It can be seen that, according to the confusion matrices,
the baseline model correctly detects all the sequences that
contain no VRU as no interaction required. On the other
hand, the baseline model cannot differentiate the sequences
that require no interaction even though some VRUs co-
exist with the left-turning vehicle, e.g. pedestrians standing
far away on the sidewalk. However, the s+m2 models that
only take the object information as input fall behind the
baseline model measured by Precision. Without tracking,
no continuous information can be leveraged to deduce the
motion of the same object from frame to frame. Moreover,
there is a trade-off between high-confidence and failure of
the object detection. The upper-bound threshold for detection
confidence is set to 0.45 to make sure that the left-turning
vehicle is always detected at each frame. This often leads
to noisy detection such as wrong type of detected objects,
type-swapping and no detection (see Fig. 5). Whereas, the
performance for the s+op models that take motion infor-
mation as input is significantly better than the baseline and
s+m2 models by all measurements. The motion information
extracted by optical flow captures the dynamics in the
interaction between vehicles and VRUs. When using both the
object information and motion information, the performance
for sequence-to-sequence models is further enhanced.

Across different voting schemes by using the same in-
put information, the ones that put more emphasis on the
later frames (s+m2-fast, s+op-slow, s+m2+op-slow) gen-
erate more accurate detection and in general, slow-asc.
performs better than the fast-asc. voting scheme.

One interesting observation is the comparison between
the best sequence-to-sequence model s+m2+op-slow and the
baseline model. From the confusion matrices we can see that,
82 false positive out of a total of 98 cases detected by the
baseline have been correctly classified by s+m2+op-slow. It
further proves that the co-existence of vehicles and VRUs
do not necessarily require immediate interaction, especially
when they are far away from each other or remain static.
Nevertheless, one of the no-interaction case that involves
no VRU is wrongly classified as interaction by s+m2+op-
slow. Even though it has very high accuracy for interaction
detection in situations with no VRU, it is not optimal in this
regard. Therefore, we combine the baseline model with the
s+m2+op-slow into a hybrid model. In the end, the hybrid
model prevents the aforementioned false positive interaction
detection and increases the accuracy to 0.923.

To sum up, (1) from the ablation study, the object informa-

Fig. 5: Examples of M2Det [6] detection over left-turning
vehicle sequences denoted by p: pedestrian, bi: bicycle, c:
car, m: motorcycle, bu: bus and t: truck. Some steps in the
upper figure of bicycle detection are missing and in the lower
figure the types of car and truck are swapped.

tion extracted by M2Det alone is not adequate for interaction
detection; (2) Motion dynamics between vehicles and VRUs
can be captured by optical flow; (3) The combined infor-
mation from both M2Det and optical flow using the slow-
ascending voting scheme further boosts the performance; (4)
False positive interaction detection with no VRU involved
can be easily prevented by the combination of the sequence-
to-sequence method with the baseline model.

E. Qualitative Results

Scenarios of different interactions and the corresponding
predictions using s+m2+op-slow are visualized from Row-1
to Row-4 in Fig. 6. The relevant VRUs and the target vehicle
are marked by red and blue bounding boxes, respectively.

In Row-1, several VRUs interact with the left-turning
vehicle from frame to frame. The prediction at each frame
points to a higher probability (above 0.5) of interaction.

In Row-2, several VRUs approach the left-turning vehicle
from a relatively long distance at the beginning. But they
close up the gap quickly. The probability of interaction
increases as the distance decreases and then stays at a
higher level after the vehicle moves close to the VRUs.
s+m2+op-slow correctly predicts the sequence as interaction
by summing up the frame-level predictions.

In Row-3, the vehicle is turning left with no other VRU
cross-walking. The prediction at each frame stays at a very
low level for interaction.

Row-4 shows the target vehicle behind the leading vehicle
approaching the zebra zone which has already been occupied
by a cyclist. The probability of interaction is above 0.5 at
early frames since both the leading and target vehicles are
relatively close to the cyclist. As the cyclist reaches the end
of the crossing, the prediction at each frame points to a lower
probability of interaction. Throughout the whole sequence,
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Fig. 6: Scenarios of different interactions and the corresponding predictions denoted by each row: Row-1 and Row-2 denote
two vehicle left-turning sequences that require interaction and Row-3 and Row-4 denote two vehicle left-tuning sequences
that require no interaction. The relevant VRUs are marked by red bounding boxes and the target vehicle is marked by a
blue bounding box. Please note that car-flowing interaction is not considered in this study.

however, there is no direct interaction required between the
target vehicle and the cyclist. The summation of the frame-
level predictions using the slow-ascending voting scheme
correctly predicts this sequence as no interaction.

In summary, from the visualization, it showcases the abil-
ity of s+m2+op-slow for capturing the interaction dynamics
at the short intervals. Even though the sequence-level labels
can only represent the overall interaction, the predictions at
each frame provide more interactive and accurate information
about the changing of the interaction.

V. DISCUSSION

In this section, we will discuss the false detection from
the hybrid model. In total, there are 18 cases (7.7%) out
of the test set are wrongly classified, of which 3 are false
negative detection (ground truth interaction but prediction no
interaction) and 15 are false positive detection (ground truth
no interaction but prediction interaction), see Table III.

All the false negative cases are ambiguous for interaction
detection even for humans. Namely, in one case the left-
turning vehicle reaches the intersection while a pedestrian
is approaching the zebra zone (see Fig. 7a), and in the
other two similar cases the left-turning vehicle moves in the
intersection while a pedestrian is leaving the zebra zone (see
Fig. 7b). It is difficult to tell whether the interaction actually
occurs from the external observations. In such situations,
sensor information might be required to detect the road users’
attention (e.g. eye gaze) and situation awareness [26].

Among the false positive cases, most of them are caused
by car-following interaction. Direct interaction is required
between the leading vehicle and the VRUs involved. The

(a) A pedestrian approaches the
zebra zone and the car enters the
intersection

(b) A pedestrian is leaving the
zebra zone to be chased by the
target car

Fig. 7: False negative cases (ground truth interaction but
prediction no interaction) by the hybrid model

target vehicle follows up when the leading vehicle exits the
intersection. However, there is often no direct interaction
required from the waiting target vehicle with the VRUs
(see Fig. 8). Without the consideration of the interaction
between vehicles, the hybrid model may have difficulties
for interaction detection in the vehicle waiting scenarios.
This will be our future work to include interaction between
vehicles in vehicle turning sequences.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a sequence-to-sequence method
to automatically detect interaction between vehicles and
VRUs at an intersection using video data. A state-of-the-
art object detector and optical flow are used to extract
object information and motion information, respectively. We
create a large dataset of various traffic activities from an
extremely busy intersection to evaluate the proposed method.
Our method detects interactions in vehicle turning sequences
of varying length with an accuracy over 92% and generates
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(a) Interaction required between
the leading car (in orange
bounding box) and the pedes-
trian (in red bounding box)

(b) No interaction required
as the pedestrian has finished
crossing when the target car (in
blue bounding box) enters the
intersection

Fig. 8: False positive case (ground truth no interaction but
prediction interaction) by the hybrid model

a probability of interaction at each frame less than 0.1 s to
represent the dynamics of interaction along a sequence. Via
an ablation study we prove that, by avoiding timely and
costly work of tracking, the object information and motion
information are very beneficial for interaction detection.
The comparison of three voting schemes for summing up
the frame-level predictions indicates that interaction often
changes over time even in the same sequence and later frames
weight more in the overall interaction. A hybrid model is
used to prevent wrong detection that involves no VRUs to
further boost the performance of interaction detection.

In our next step, we will include the interactions be-
tween vehicles during the turning and extend the sequence-
to-sequence method for classifying interaction patterns at
each interval, e.g. differentiating the interaction levels based
on collision risks. In comparison to the hard-coded voting
scheme investigated in this study, the attention mechanism
[27] will be leveraged to automatically learn the location and
timing when such interaction patterns occur. More traffic data
will be acquired from different interactions for training the
proposed model and testing its ability for unseen scenarios.
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