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Misalignment Recognition Using Markov Random

Fields with Fully Connected Latent Variables for

Detecting Localization Failures

Naoki Akai1, Luis Yoichi Morales2, Takatsugu Hirayama2, and Hiroshi Murase1

Abstract—Recognizing misalignment between sensor measure-
ments and objects that exist on a map due to inaccuracies in
localization estimation is challenging. This can be attributed to
the fact that the sensor measurements are individually modelled
for solving the localization problem, resulting in entire relations
of the measurements being ignored. This paper proposes a mis-
alignment recognition method using Markov random fields with
fully connected latent variables for the detection of localization
failures. The proposed method estimates the classes of each sensor
measurement that are aligned, misaligned, and obtained from
unknown obstacles. The full connection allows us to consider
the entire relation of the measurements. A misalignment can
be exactly recognized even when partial sensor measurements
overlap with mapped objects. Based on the class estimation
results, we are able to distinguish whether the localization has
failed or not. The proposed method was compared with six
alternative methods, including a convolutional neural network,
using datasets composed of success and failure localization
samples. Experimental results show that classification accuracy
of the localization samples using the proposed method exceeds
95 % and outperforms the other examined methods.

Index Terms—Localization, Failure Detection and Recovery,
Probability and Statistical Methods.

I. INTRODUCTION

WE GENERALLY assume that sensor measurements

are independent in the localization problem [1]. This

assumption allows us to simply model the sensor measure-

ments because it is not necessary to model how entire sensor

measurements are simultaneously obtained. The probabilistic

distribution of the measurements is denoted as:

p(Y|x,m) =

K
∏

k=1

p(yk|x,m), (1)

where x is a target pose, m is a map, and Y =
(y1,y2, ...,yK)T are the sensor measurements. This model is

referred to the measurement model. Features detected in the

sensor measurements, e.g., lines, can also be used as Y [2].

This assumption, however, causes a problem whereby the

entire relation of the sensor measurements is ignored. Conse-

quently, it is hard to recognize misalignment that has occurred
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Fig. 1. Success (top left) and failure (top right) localization samples with the
sensor measurement class estimation by the proposed method; aligned (red),
misaligned (blue), and unknown (green). To estimate the classes, we utilize
phenomena whereby the residual errors of the classes are in accordance with
normal, exponential, and uniform distributions as shown in the bottom graph.

because of localization failure. Moreover, misalignment means

that the sensor measurements are not be correctly matched to

the corresponding objects on a map, for example landmarks.

Map matching [3] is an approach used to consider the entire

relation, but it is unable to consider physical measurement

noises [1]. Other approaches to overcome the problem include

simultaneously estimating environment dynamics [4], [5], but

such simultaneous estimation cannot be dealt with by the local-

ization framework. We therefore need to use the independent

assumption to practically solve the localization problem.

In this paper, we propose a misalignment recognition

method that uses Markov random fields (MRFs) with fully

connected latent variables (FCLVs). The full connection allows

us to consider the entire relation of the sensor measurements

without performing complex measurement modelling. The top

of Fig. 1 illustrates the process of the proposed method. The

proposed method divides the sensor measurements into three

classes; aligned (red), misaligned (blue), and unknown (green).

The measurement classes depicted in the top of Fig. 1 were

estimated using the proposed method. As can be seen from the

top right of Fig. 1, the misalignment can be exactly recognized

even though the partial sensor measurements are overlapping

with the landmarks. To recognize the measurement classes,

we utilize phenomena where residual errors of the classes

are in accordance with normal, exponential, and uniform

distributions, respectively. The bottom of Fig. 1 shows the

histograms relating to the residual errors and the distributions.
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The histograms were established from the datasets used in this

work. The dataset is presented in further detail in Section IV.

The main contribution of this work is to propose the

use of MRFs with FCLVs in recognizing a misalignment.

Additionally, we describe how to detect localization failures

based on the class estimation. Classification performance of

the proposed method for success and failure localization

samples was compared to six existing methods including a

convolutional neural network (CNN). Experimental results

show that classification accuracy using the proposed method

exceeded 95 % and outperformed the other methods.

The rest of this paper is organized as follows. Section II

summarizes related works. Section III details the proposed

method. Section IV and V describe the experimental condi-

tions and results. Section VI concludes this work.

II. RELATED WORKS

As mentioned in Section I, the sensor measurements are

independently modelled in localization approaches, for exam-

ple in Kalman and particle filters (PF) [1]. Consequently, it is

hard to recognize a misalignment based on the measurement

model. Gutmann et al. proposed a failure detection method for

PF-based localization that observes history of likelihoods [6].

The method does not explicitly recognize the misalignment.

In optimization-based localization approaches, for example

ICP and NDT scan matchings [7], [8], corresponding points (or

features) are searched for individually from the map. The cost

function is then calculated using the corresponding pairs and

the relative pose that minimizes the cost function is estimated.

Thus, the entire relation of the measurements is also ignored.

In [9], [10], the definition of map brokenness and an

algorithm to measure inconsistencies of the map are presented.

However, this method has a severe limitation in autonomous

navigation because it is dependent on a given reference map.

A popular method to detect the failure of point registration

is to use distances between corresponding points, for example

root mean square, as presented in [11]. The partitioned mean

normals measure that uses consistency between normals is

presented in [12]. However, insufficient performance of classi-

fication methods that are based on thresholds of corresponding

pairs when registration errors are small is presented in [13].

Some authors propose failure detection methods that use a

redundant position estimation system [14], [15]. Localization

results that might be incorrect can be detected based on the

redundant information. However, these methods do not give

us the criterion to detect failures in each estimation.

Recently, a number of authors have proposed localization

failure detection methods based on machine learning (ML)

algorithms [16], [17]. The ML-based methods allow us to im-

plicitly model complex relationships. The ML-based methods

have also been applied in the detection of multipath, which

causes failure in GNSS-based localization [18]. Almqvist et

al. compared several misaligned point cloud detection meth-

ods including the ML-based methods [19] and showed that

AdaBoost [20] executed a better overall performance.

Deep neural networks have been applied to solve many

problems. End-to-end localization [21] and rigid transforma-

tion estimation [22] have been proposed. It might be suggested
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Fig. 2. The graphical model of the MRFs with the FCLVs.

that the networks learn the entire relation of source and target

data, because the process to find corresponding points and/or

features between source and target data is omitted.

We previously proposed a localization method using the

measurement model that explicitly considers environment dy-

namics and showed that the robustness could be improved [23].

Even if environmental dynamics are explicitly considered,

localization failure detection cannot be achieved. We also

previously proposed a CNN-based localization failure detector

in [24], [25]. The CNN-based detector distinguishes, exactly,

whether localization has failed or not. In this paper, we

compare the proposed method with the detector and show that

the proposed method outperforms the detector.

Similar methods to our method are presented in [26]–

[30]. In [26], the use of conditional random fields (CRFs)

with FCLVs in recognizing in and outliers between two point

clouds is presented. The method enables a capacity to ignore

outliers when computing the cost function and the alignment

robustness can thus be increased. In [27], the use of the CRFs

to assess map quality is presented. The CRFs can recognize

suspicious mapping results, for example, when the same

objects are not correctly mapped as the same landmarks. The

method is quite similar to our method, because both methods

can recognize the misalignment; however, our method uses

MRFs with FCLVs for misalignment recognition. In particular,

our method does not require a training dataset. In [28], ICP

scan matching using MRFs without FCLVs is presented. In

the method, MRFs are also used to recognize in and outliers

between two point clouds. Through a series of experiments,

we show that the use of FCLVs yields better recognition

performance. Furthermore, we estimate the localization failure

probability based on the misalignment recognition. In [29],

[30], residual error distribution modelling for calculating like-

lihood is presented. Our method also utilizes residual error

distributions, but with a differing objective. We utilize the

distributions to estimate the measurement classes.

III. PROPOSED METHOD

Figure 2 illustrates a graphical model of the MRFs with

the FCLVs. Z = (z1, z2, ..., zK)T with zk ∈ R
3, zk,l ∈

{0, 1}, and
∑3

l=1
zk,l = 1 are the latent variables, e =

(e1, e2, ..., eK)T with ek ∈ R and e ≥ 0 are the residual

errors, and K is the number of sensor measurements. Where

the k-th residual error, ek, is a distance between the k-th

measurement point and a corresponding landmark.

In this work, we divide the sensor measurements into three

classes, aligned, misaligned, and unknown. Because these

classes correspond to the latent variables, the number of the

latent state is three. “aligned” and “misaligned” mean that

the sensor measurements have hit the landmarks and correctly
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match, or do not match, with them. “unknown” means that

the sensor measurements have hit obstacles that do not exist

on the map. p(zk,1 = 1), p(zk,2 = 1), and p(zk,3 = 1)
denote probabilities of the aligned, misaligned, and unknown

classes of the k-th measurement, respectively. We first estimate

posterior probabilities of the measurement classes, p(Z|e), and

then detect the localization failure based on these probabilities.

A. Measurement class estimation via posterior distributions

The posterior probabilities are denoted as:

p(Z|e) =
1

Z

K
∏

i=1

3
∏

l=1

p(ei|zi)
zi,l

K
∏

i=1

K
∏

j=1\i

3
∏

l=1

3
∏

m=1

ψi,j(zi, zj)
zi,lzj,m ,

(2)

where Z is a normalization constant, p(ei|zi) represent like-

lihood distributions, ψi,j(zi, zj) is a transition probability

matrix between a maximal clique composed of zi and zj , and

j = 1\i are integral numbers with the exception of i. The like-

lihood distributions are described in Section III-B. Estimating

the probabilities is not practical because the number of states

of the probabilities is 3K . Instead, we individually estimate

marginal posterior probabilities of zk as:

p(zk|e) =
∑

z1

· · ·
∑

zk−1

∑

zk+1

· · ·
∑

zK

p(z|e). (3)

If the latent variables are connected by only its vicinity vari-

ables, i.e., with no loop connections, then the exact marginal

posterior probability can be efficiently calculated as follows:

p(zk|e) =
1

Z
lk ⊗ µα(zk)⊗ µβ(zk), (4)

where ⊗ is the Hadamard product operator, lk is a likelihood

vector, and µα and µβ are forward and backward messages

[31]. The messages can be recursively calculated as follows:

µα(zk) =ψk−1,k(zk−1, zk)

lk−1 ⊗ ψk−2,k−1(zk−2, zk−1) · · · ,

=ψk−1,k(zk−1, zk)µα(zk−1),

(5)

µβ(zk) =ψk+1,k(zk+1, zk)

lk+1 ⊗ ψk+2,k+1(zk+2, zk+1) · · · ,

=ψk+1,k(zk+1, zk)µβ(zk+1),

(6)

and the first values are calculated as:

µα(z2) = ψ1,2(z1, z2)(l1 ⊗ 1), (7)

µβ(zK−1) = ψK,K−1(zK , zK−1)(lK ⊗ 1). (8)

The proposed graphical model, however, has loop connec-

tions and, thus, the exact marginal posterior probabilities can-

not be calculated using the aforementioned equations. Approx-

imate marginal posterior probabilities of the latent variables

can be estimated using loopy belief propagation [31]. First,

every latent variable receives messages from its connected

variables to initialize the marginal posterior probabilities:

p(zk|e) =
1

Z
lk ⊗ µ

′

1→k(zk)⊗ · · · ⊗ µ
′

k−1→k(zk)

⊗ µ
′

k+1→k(zk)⊗ · · · ⊗ µ
′

K→k(zk),
(9)

where µ
′

i→k(zk) is the initial message sent from i-th to k-th

latent variables and is denoted as follows:

µ
′

i→k(zk) = ψi,k(zi, zk)(li ⊗ 1). (10)

After every latent variable receives the messages, the variables

send further messages using an arbitrary passing strategy. The

marginal posterior probabilities are updated until convergence:

p(zk|e)←
1

Z
p(zk|e)⊗ ψi,k(zi, zk)p(zi|e),

=
1

Z
p(zk|e)⊗ µi→k(zk).

(11)

B. Likelihood distributions of residual errors

The bottom of Fig. 1 shows the histograms of residual

errors for the aligned, misaligned, and unknown classes. These

histograms were built using a simulator and the ground truth

was available. The residual errors of the aligned, misaligned,

and unknown classes are in accordance with normal (red),

exponential (blue), and uniform (green) distributions, respec-

tively. We model the likelihood distributions as:

3
∏

l=1

p(ek|zk)
zk,l =

3
∏

l=1

p(ek|zk,l = 1, θl)
zk,l , (12)

p(ek|zk,1 = 1, θ1) = 2N (ek; 0, σ
2), (13)

p(ek|zk,2 = 1, θ2) =
λ exp (−λek)

1− exp (−λemax)
, (14)

p(ek|zk,3 = 1, θ3) = unif(0, emax), (15)

where emax is the maximum residual error, θl is the hyper-

parameter of the l-th likelihood distribution, i.e., θ1 = σ2,

θ2 = λ, and θ3 = ∅, N (ei; 0, σ
2) is the zero-mean Gaussian

with a variance of σ2, and unif(0, emax) is the uniform

distribution within the given region. The factor 2 in (13) stems

from the fact that the residual is only defined for positive

numbers, which means that N only integrates to 0.5. This

also means that the sign of the residual errors can be ignored.

C. Localization failure detection

Equation (11) gives us probabilities of the k-th sensor

measurement classes; these do not directly provide a criterion

for the detection of localization failures. We need to determine

a threshold to detect failures based on the probabilities.

In this work, we use a misalignment ratio as the threshold

for detecting a failure. The misalignment ratio is defined as:

MIS =

∑K

i=1
zk,2

K −
∑K

k=1
zk,3

, (16)

where zk,2 = 1 and zk,3 = 1 denote that the k-th sensor mea-

surement class is misaligned and unknown and K−
∑K

k=1
zk,3
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denotes that the unknown classes are ignored to calculate

the misalignment ratio. We define the localization failure

whereby the MIS is larger than the threshold, MISth. Thus,

the localization failure probability, pfailure, is denoted as:

pfailure =
∑

Z∈C

p(Z|e), (17)

where Z ∈ C is a set of states that satisfy the condition,

MIS ≥ MISth. It is, however, not practical to compute the

probability because the number of the states is 3K . We use a

sampling-based method to approximately compute it:

ẑk ∼ p(zk|e), (18)

pfailure ≃
1

N

N
∑

n=1

1

(

∑K

i=1
ẑk,2

K −
∑K

k=1
ẑk,3
≥ MISth

)

, (19)

where N is the number of sampling processes and 1(·) is

an indicator function set at 1 when the condition within the

bracket is true, and 0 otherwise.

IV. EXPERIMENTAL CONDITIONS

During the experiments, we focused on the 2D LiDAR-

based localization problem and used a 2D LiDAR simulator1.

Thanks to the use of a simulator, we could use the ground truth

data and were hence able to exactly evaluate performance. We

created datasets composed of success and failure localization

samples and validated the classification accuracy of these

samples. We did not focus on the continuous time series lo-

calization problem because setting constant conditions in each

sample is difficult. Instead, we focused on the classification of

localization estimation in a certain moment. Examples of the

success and failure localization estimation samples are shown

in Fig. 4. The accompanying video shows the demonstrations

of the proposed method of the continuous localization problem

utilizing a noisy odometry simulation.

The accompanying video also shows a demonstration with

the real robot. The video only shows the qualitative results,

but it serves to assist in the understanding of the performance.

A. 2D LiDAR simulator

We began by building 2D occupancy grid maps (OGMs) for

real environments using the 2D LiDAR SLAM [4]. To repro-

duce the dynamic environment in a simulator, we simulated

unknown obstacles that randomly walk on free spaces of the

OGM and randomly remove landmarks. The measurements of

the 2D LiDAR were simulated on the OGM. The Gaussian

noise with (0.03 m)2 variance was added to the measurement

ranges. We referred to the Hokuyo 2D LiDAR (TOP-URG)

and the following detailed specifications of the 2D LiDAR:

the measurement range was 30 m, the measurement angle was

270 deg, and the measurement angle resolution was 0.25 deg.

1https://github.com/NaokiAkai/AutoNavi. This repository includes map
data used for creating the datasets.

TABLE I
ESTIMATION AND RESIDUAL ERRORS OF THE DATASETS.

Ave. Std. Min. Max.

Trans. error 0.08 m 0.03 m 0 m 0.14 m
Success Head. error 0.25 deg 0.14 deg 0 deg 0.50 deg

Resid. error 0.05 m 0.05 m 0 m 4.82 m

Trans. error 0.23 m 0.06 m 0 m 0.59 m
Failure Head. error 0.77 deg 0.70 deg 0 deg 3.74 deg

Resid. error 0.10 m 0.10 m 0 m 5.22 m

TABLE II
RATIOS RELATED TO THE MEASUREMENTS OF THE DATASETS.

Ave. Std. Min. Max.

Valid measurement 94.35 % 7.33 % 40.43 % 100 %
Valid landmark 95.65 % 5.71 % 47.27 % 100 %

Landmark measurement 54.18 % 18.03 % 0.74 % 100 %
Unknown measurement 40.17 % 18.21 % 0 % 98.89 %

B. Datasets

1) Success and failure localization samples: We defined a

failure in the localization to be when the translation or heading

direction errors,
√

∆x2 +∆y2 and |∆θ|, exceed thresholds.

These thresholds were set to 0.2 m and 2 deg. The failure

localization samples were created by adding Gaussian noise to

the ground truth. An example of the failure sample is shown

in the bottom of Fig. 4. Slight mismatches can be seen.

The ground truth data are not used for the success localiza-

tion samples because they do not have any estimation errors

and this is not realistic. We add small noise to the ground

truth while the translation and heading direction errors do not

exceed the thresholds. Hence, the slightly disturbed ground

truth is used as the success samples. Its example is also seen

at the top of Fig. 4.

2) Details of datasets: We used five indoor environments

including a larger car garage, two lobbies, and two office

floors to create the datasets. The LiDAR can measure enough

landmarks at all of the areas in the environments as shown in

Fig. 1 (the Fig. 1 shows the car garage). Approximate size of

the environments are shown in Table III.

Table I shows the estimation and residual errors of the

success and failure datasets. The values related to the residual

errors were calculated using only measurements that hit the

landmarks. The success and failure datasets include 2394 sam-

ples, respectively. As can be seen from the table, the estimation

and residual errors of the failure datasets are not large. Hence,

slight mismatches should be recognized to accurately classify

the localization samples.

Table II shows ratios related to the sensor measurements.

“Valid measurement” is the ratio of whether the measurements

hit or do not hit objects. “Valid landmark” is the ratio of

the landmarks that are located in the measurement range.

“Landmark measurement” and “Unknown measurement” are

ratios of the measurements that hit the landmarks and unknown

obstacles. As can be seen from the table, the localization can

be suggested to have performed well because the valid land-

marks are enough and almost half of the measurements hit the

landmarks. Meanwhile, almost half of the measurements hit

unknown obstacles. Hence, robustness against environmental

changes is also necessary for a better overall performance.
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V. EXPERIMENTS

A. Parameters for the proposed method

1) Transition probabilities: We use the homogeneous tran-

sition probability matrix, denoted as:

ψi,j(zi, zj) =





4/5 0 1/5
0 4/5 1/5
1/3 1/3 1/3



 . (20)

The first, second, and third rows are the transition probabilities

from the aligned, misaligned, and unknown classes, respec-

tively. We assumed that the measurements, with the exception

of measurements hitting unknown obstacles, belong to the

aligned (misaligned) classes if the i-th measurement belongs

to the aligned (misaligned) class as these classes do not

simultaneously appear. Hence, these transition probabilities are

not uniform. By contrast, we assumed that the unknown class

does not give us information to predict the other measurement

classes, because the measurements that hit unknown obstacles

cannot be usually expected. Hence, the transition probability

is set to uniform and the matrix is not symmetric.

2) Likelihood distributions: We set the parameters relating

to the likelihood distributions as σ2 = (0.075 m)2, λ = 10.1,

and emax = 0.6 m. These parameters were tuned using

corresponding datasets that were not used for the validation.

3) Misalignment ratio threshold and failure detection: We

set the misalignment ratio threshold, MISth, to 10 %. In

following the comparison, we further investigated the effect

caused by the threshold. The localization results were catego-

rized as a failure if the failure probability, pfailure, was larger

than 0.5. The number of the sampling process, N , was set to

1000.

4) Computation process: The voxel grid filter with resolu-

tion 0.1 m was applied to the sensor measurements to ensure

spatial uniformity and the residual errors were computed.

Then, the MRFs with the FCLVs took the residual errors and

performed the iterative computation process for estimating the

marginal posterior probabilities, as shown in equation (11),

until convergence occurred. Summation of the variation of the

probabilities was checked and the process was regarded as

converged if the summation within 100 steps was less than

10−9. During implementation, the random update strategy was

used as the loopy belief propagation.

B. Comparison methods

We compare the proposed method with two model, and

four ML, based methods. The model-based methods did not

require training data and the proposed method was also the

model-based method. The MRFs without the FCLVs (MRFs

w/o FCLVs) and root mean square-based classification were

used as the model-based methods. The latent variables of the

MRFs w/o FCLVs were only connected to its neighbouring

variables. Logistic regression, support vector machine (SVM),

AdaBoost, and CNN were used as the ML-based methods.

1) Input data and output label: All the methods, with the

exception of logistic regression and SVM, used a vector of

residual errors, e, as the input data. The logistic regression and

SVM used handcrafted features as the input data (see Section

V-B5 for more details). We used a binary label l ∈ {0, 1} and

provided l = 1 and l = 0 to the success and failure samples.

2) Learning and validation: The ML-based methods were

trained in a supervised manner. In comparison, datasets created

from four differing environments were used for the training

and the single remaining dataset was used for the validation.

3) MRFs w/o FCLVs: We calculated the marginal posterior

probabilities using the equation (4). Then, the localization

failure probability was calculated using the equation (19) and

the same misalignment ratio threshold as used in the proposed

method. The localization samples were categorized as a failure

if the failure probability, pfailure, was larger than 0.5.

4) Root mean square: The root mean square is denoted as:

RMS =

√

√

√

√

1

K

K
∑

k=1

e2k. (21)

We computed averages of the RMS for both success and the

failure localization datasets. The resultant averages were used

as the thresholds for distinguishing the localization samples.

5) Logistic regression and SVM: We created features from

the residual errors for the processes of logistic regression and

SVM. Sum, average, and standard deviation of the errors and

vicinity error difference were used for these features.

6) AdaBoost: The decision tree classifier was used for

the learning model of weak classifiers. The number of weak

classifiers was set to 1000.

7) CNN: The CNN for comparing image similarity are

proposed in [32]. Based on the CNN, we previously proposed

the CNN to distinguish whether the localization has failed or

not in [24], [25]. We use the CNN in this work.

The architecture of the CNN was composed of four con-

volution and max pooling layers and two fully connected

layers. The CNN received the residual errors and output a

continuous value from zero to one. The localization samples

were categorized as failure when the output was less than 0.5.

C. Comparison results of classification performance

Table III shows classification results of the success and

failure localization samples. The values shown in the table

were computed using the numbers of true positives, false

positives, true negatives, and false negatives, respectively.

Here, the success and failure samples are used as the positive

and negative samples. The A, B, C, D, and E are names of the

environment and the total means all datasets. The same number

of success and failure samples were used for the validation,

i.e., the chance rate was 50 %. It should be noted that the recall

and F-measure values from the MRFs w/o FCLVs were not

defined because all samples were classified as being a failure

and the denominator values were zero.

In the environments A, C, D, and E, the proposed method

was the most accurate. In the environment B, the CNN were

the most accurate. For the total data, the proposed method

was the most accurate and its accuracy exceeded 95 %. The

AdaBoost had a good performance, as presented in [19], but its

performance was marginally lower than that of the proposed

method and CNN. The root mean square-based classification
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TABLE III
CLASSIFICATION RESULTS.

Proposed Method MRFs w/o FCLVs Root mean square Logistic regression SVM AdaBoost CNN

Accuracy 97.76 % 50.00 % 82.36 % 60.33 % 63.64 % 93.86 % 96.49 %
A Precision 98.64 % 0 % 95.13 % 77.58 % 66.67 % 95.71 % 97.86 %

Car garage Recall 96.93 % - 75.78 % 57.68 % 62.87 % 92.29 % 95.26 %
30 m × 35 m Specificity 98.61 % 50.00 % 93.46 % 65.77 % 64.52 % 95.55 % 97.80 %

F-measure 97.78 % - 84.36 % 66.17 % 64.71 % 93.97 % 96.54 %

Accuracy 95.51 % 50.00 % 75.93 % 62.69 % 64.22 % 91.90 % 97.05 %

B Precision 93.00 % 0 % 65.86 % 60.39 % 62.80 % 89.72 % 96.50 %

Lobby 1 Recall 97.93 % - 82.47 % 63.30 % 64.64 % 93.82 % 97.5 %
40 m × 20 m Specificity 93.33 % 50.00 % 71.58 % 62.13 % 63.83 % 90.15 % 96.54 %

F-measure 95.40 % - 73.24 % 61.81 % 63.70 % 91.72 % 97.03 %

Accuracy 92.79 % 50.00 % 74.45 % 54.91 % 59.06 % 87.34 % 92.36 %
C Precision 98.25 % 0 % 92.58 % 63.54 % 65.28 % 94.32 % 94.54 %

Office floor 1 Recall 88.58 % - 67.95 % 54.19 % 58.06 % 87.76 % 90.59 %

50 m × 50 m Specificity 98.04 % 50.00 % 88.36 % 55.94 % 60.35 % 93.40 % 94.29 %
F-measure 93.17 % - 78.37 % 58.49 % 61.46 % 88.16 % 92.52 %

Accuracy 97.02 % 49.90 % 77.52 % 58.73 % 62.73 % 92.40 % 96.61 %
D Precision 98.35 % 0 % 74.54 % 52.36 % 58.52 % 97.13 % 98.97 %

Lobby 2 Recall 95.80 % - 79.26 % 60.00 % 63.90 % 88.74 % 94.51 %
50 m × 20 m Specificity 98.31 % 49.95 % 75.97 % 57.74 % 61.74 % 96.83 % 98.92 %

F-measure 97.06 % - 76.83 % 55.92 % 61.09 % 92.75 % 96.70 %

Accuracy 92.90 % 50.00 % 76.19 % 57.41 % 58.14 % 87.58 % 91.03 %
E Precision 90.40 % 0 % 70.14 % 38.41 % 38.83 % 87.27 % 87.27 %

Office floor 2 Recall 95.16 % - 79.62 % 61.95 % 63.27 % 87.82 % 94.37 %
40 m × 50 m Specificity 90.85 % 50.00 % 73.32 % 55.37 % 55.87 % 87.34 % 88.16 %

F-measure 92.72 % - 74.58 % 47.42 % 48.12 % 87.54 % 90.67 %

Accuracy 95.28 % 49.98 % 77.38 % 58.83 % 61.59 % 90.69 % 94.70 %
Precision 95.78 % 0 % 79.87 % 58.65 % 58.44 % 92.90 % 95.01 %

Total Recall 94.83 % - 76.08 % 58.87 % 63.37 % 88.96 % 94.37 %
Specificity 95.74 % 50.00 % 78.81 % 58.80 % 60.90 % 92.57 % 95.04 %
F-measure 95.30 % - 77.93 % 58.76 % 60.34 % 90.89 % 94.67 %

worked well in some environments, but its total accuracy was

less than 80 %. The MRFs w/o FCLVs, logistic regression,

and SVM did not have a good performance.

It is not easy to argue through the results that the perfor-

mance of the proposed method is statistically superior to that

of the CNN because the classification accuracies of the two

methods are almost the same. However, the important result is

that the proposed method with the explainable models yielded

almost the same performance as the CNN. We consider that the

explainable models are more useful than CNN-based models

if their classification performance is almost the same.

D. Performance investigation of the proposed method

1) Computational complexity: We measured computational

complexity as described in Section V-A4. An Intel(R) Xeon(R)

E5-1650 v3@3.50 GHz was used and the average/standard

deviations of the iteration number and computational time

were 318.91/415.90 and 14.25/4.32 msec. The computational

time of the proposed method is longer than that of other

methods, as only the proposed method employed an iteration

process. However, the proposed method can work in real time

because the measurement frequency of the sensor is 40 Hz.
2) Effect of the hyperparameters: Figure 3 shows the

recognition accuracy from the proposed method when applied

to different hyperparameters as shown in the equations (13)

and (14). σ was changed from 0.05 to 0.1 every 0.005 and λ
was changed from 7 to 12 every 0.5. The highest accuracy was

95.24 % and the parameters were σ = 0.075 and λ = 10.0.

The classification accuracy did not produce a drastic decrease,

even though the parameters were slightly changed.

0.05 0.06 0.07 0.08 0.09 0.1

σ

7

8

9

10

11

12

λ

90

91

92

93

94

95

A
c
c
u

ra
c
y
 [
%

]

Fig. 3. The recognition accuracy from the proposed method with different
hyperparameters for the pre-determined likelihood distributions.

3) Measurement class recognition accuracy: Table IV

shows the averages and standard deviations of the measure-

ment class recognition accuracy using the proposed method

and the MRFs w/o FCLVs. The class recognition accuracy

using the proposed method exceeded 90 % for the success,

failure, and both datasets. The recognition accuracy from the

MRFs w/o FCLVs for the failure dataset was quite bad.

Figures 4 and 5 show examples of the measurement class

recognition results using the proposed method and the MRFs

w/o FCLVs. The proposed method accurately recognized the

measurement classes. As can be seen in the bottom right of

Fig. 4, a slight mismatch could be exactly identified even

though the partial measurements were overlapped with the

landmarks. The recognition results of the MRFs w/o FCLVs,

when the localization process was a success, were good but

were a bit noisy. Hence, almost all successful localization re-
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TABLE IV
AVERAGES AND STANDARD DEVIATIONS OF MEASUREMENT CLASS RECOGNITION ACCURACY USING THE PROPOSED METHOD AND MRFS W/O FCLVS.

Proposed method MRFs w/o FCLVs

Dataset Success Failure Both Success Failure Both

A 97.22 (6.25) % 93.71 (11.71) % 95.37 (9.39) % 93.69 (4.46) % 59.31 (9.57) % 76.50 (7.47) %
B 93.88 (11.29) % 91.81 (12.13) % 92.48 (11.72) % 91.92 (5.05) % 55.36 (11.73) % 73.64 (9.03) %
C 96.05 (9.53) % 85.34 (25.65) % 90.70 (19.35) % 92.80 (5.84) % 42.56 (10.95) % 67.68 (8.77) %
D 97.07 (6.59) % 91.98 (13.95) % 94.53 (10.91) % 93.49 (4.65) % 56.14 (12.41) % 74.81 (9.37) %
E 91.17 (6.73) % 88.14 (16.47) % 89.66 (17.19) % 90.11 (6.73) % 51.32 (12.51) % 70.72 (10.05) %

Total 95.07 (11.32) % 90.12 (16.94) % 92.59 (14.41) % 92.43 (5.55) % 53.11 (12.83) % 72.77 (9.88) %
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Fig. 4. Measurement class recognition results in the success (top) and failure
(bottom) cases by the proposed method. The right hand figures are enlarged,
and figures in area A are shown to the left.

sults were classified as a failure because the misalignment ratio

threshold was not large (10 %). The recognition accuracy was

quite bad when the localization had failed because almost all

of the measurements that did not overlap with the landmarks

were categorized as the unknown class.

4) Effect of the misalignment ratio thresholds: Table V

shows the classification results from the proposed method and

MRFs w/o FCLVs with different misalignment ratios. The

MRFs w/o FCLVs worked well if the ratio was set to 50 %.

By contrast, the proposed method worked well with all of the

ratios. Because the proposed method was able to accurately

recognize the measurement classes as shown in Fig. 4, the

threshold did not drastically influence the overall performance.

The Figs. 4 and 5 and Table V show that the FCLVs are

effective in improving the class recognition accuracy.

E. Limitations

The proposed method has some limitations. Figure 6 shows

examples of such limitations. The top of Fig. 6 shows a

localization result with large estimation errors, of around

5 m. The misaligned measurements can be seen on the right

side (green points), but these measurements were catego-

rized as the unknown class because the residual errors were
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Fig. 5. Measurement class recognition results in the success (top) and failure
(bottom) cases by the MRFs without the FCLVs.

Estimated poseGround truth

Estimated poseGround truth

5 m

5 m

Fig. 6. Misclassification results using the proposed method. These estimates
were categorized as a success even though the estimation errors were large.

not in accordance with the expected likelihood distributions.

Consequently, the proposed method cannot distinguish this

estimation as the failure even though some mismatches are

seen. The bottom of Fig. 6 also shows a localization result with

large estimation errors, but here all the measurements overlap

with the landmarks. In such a case, the residual errors are

according to the normal distribution and the proposed method

cannot detect such failures.

The accompanying video shows a demonstration with large
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TABLE V
CLASSIFICATION RESULTS BY THE PROPOSED METHOD AND MRFS W/O FCLVS WITH DIFFERENT MISALIGNMENT RATIO THRESHOLDS.

Proposed method MRFs w/o FCLVs

Threshold (Misalignment ratio) 30 % 50 % 70 % 90 % 30 % 50 % 70 % 90 %

Accuracy 95.28 % 95.28 % 95.26 % 95.22 % 50.00 % 93.42 % 51.82 % 50.00 %
Precision 95.82 % 95.82 % 95.82 % 95.74 % 0.13 % 98.37 % 100 % 100 %

Recall 94.79 % 94.79 % 94.75 % 94.75 % 50.00 % 89.51 % 50.93 % 50.00 %
Specificity 95.78 % 95.78 % 95.77 % 95.69 % 50.00 % 98.19 % 100 % -
F-measure 95.30 % 95.31 % 95.29 % 95.24 % 0.25 % 93.73 % 67.48 % 66.67 %

estimation errors and whereby the proposed method distin-

guishes these localization results with large estimation errors

as a failure. However, It is difficult to guarantee positive

performance of the proposed method in large estimation error

cases because the residual errors may not obey the pre-

determined likelihood distributions, as shown in the top of

Fig. 6. Hence, the proposed method is suitable for immedi-

ately detecting failure of the position tracking problem using

filtering-based localization, for example Kalman and particle

filters [1], because here the estimation errors slightly increase.

VI. CONCLUSION

This paper has proposed a misalignment recognition method

using MRFs with FCLVs for the detection of localization

failure. In the localization problem, we generally assume that

sensor measurements are independent for simply modeling the

measurements. This assumption, however, causes a problem

in which entire relations of the measurements are ignored.

Consequently, it is hard to recognize misalignment because of

localization failure. The full connection of the MRFs allowed

us to consider the entire relation of the measurements and we

achieved exact misalignment recognition even though partial

sensor measurements were overlapped with landmarks. This

paper has also presented a solution for detecting localization

failure based on the misalignment recognition.

The proposed method was compared to six existing meth-

ods, including CNN, by using datasets composed of success

and failure localization samples. In the comparative experi-

ments, we investigated classification accuracy in all of the

methods. The experimental results showed that classification

accuracy using the proposed method exceeded 95 % and

outperformed the other examined methods. Future work in-

cludes integrating the proposed method with simultaneous lo-

calization and reliability estimation method that we previously

proposed in [24], [25].
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