Active Scan LIDAR による歩行者の向きを考慮した 効率的な歩行者スキャン手法

山本 大貴 $^{1,a)}$ 新村 文1 出口 大輔 1 川西 康友 1 井手 一1 村瀬 洋 1

概要

近年,LASER 光の照射方向を瞬時かつ任意方向に制御 可能な Active Scan LIDAR が開発中であり,局所的にス キャン密度を高めることにより遠距離の歩行者を検出可 能になると期待されている.しかし,歩行者を効率的にス キャンする方法は実現されていない.そこで本発表では, 歩行者の向き毎に構築した歩行者形状モデルと存在確率に 基づいた歩行者尤度推定による Active Scan LIDAR のた めの効率的な歩行者スキャン手法を提案する.

1. はじめに

近年,自動車の自動運転技術などの先進安全運転支援シ ステムへの需要が高まっており,実用化に向けた研究も活 発である.自動運転の実現には周囲環境の認識が重要であ り,特に歩行者を認識し検出する技術が不可欠である.近 年,周囲環境理解のための車載センサとしてLIDAR(LIght Detection And Ranging)が注目されており,歩行者検出 に利用する研究が広く行われている.現在広く用いられて いるLIDARは,鉛直方向に複数のLASER光照射口を持 ち,センサを水平方向に一様に走査もしくは回転させなが らLASER光を照射することで3次元データを取得するも のである.そのため,遠方の歩行者から取得できる点群の 密度が低下するという問題がある.

近年,図1に示すようなLASER光の照射方向を瞬時か つ任意方向に制御可能なActive Scan LIDARの開発が進 められており,遠方の歩行者に対しても高密度なスキャン が可能になることが期待されている.しかし,歩行者から 効率よく距離データを得るためのスキャン手法はいまだ確 立されてない.そこで,我々は歩行者の形状モデルと歩行 者存在確率を用いた歩行者スキャン手法[1]を提案した. しかし,歩行者の向きによる形状の違いを考慮していない ため,シーンによっては歩行者から計測点が得られないと いった問題があった.そこで本発表では,歩行者の向きを 考慮した効率的な歩行者スキャン手法を提案する.具体的

¹ 名古屋大学

図 1: Active Scan LIDAR による点群スキャンの概要.

には,歩行者の向き毎に歩行者形状モデルと歩行者存在確 率を計算する.そして,疎な点群から歩行者が存在する可 能性の高い位置を歩行者の向き毎に推定し,その歩行者尤 度に基づいてスキャン位置を決定する手法を提案する.

2. 歩行者尤度に基づくスキャン手法

図 2 に提案手法の処理手順を示す.提案手法は事前に 歩行者点群から深度マップを生成する学習段階と,Active Scan LIDAR により歩行者を効率的に計測するスキャン段 階の2段階から構成される.

2.1 学習段階

学習段階では,歩行者の向き毎に歩行者形状モデルおよ び歩行者存在確率を表現するための深度マップを生成す る.学習段階は2つのステップで構成される.事前処理と して,従来の高解像度な一様スキャン型 LIDAR を用いて 歩行者を高密度にスキャンし,多数の歩行者点群を用意す る.そして,これらを正面向き,背面向き,右向き,左向 きの歩行者に分類したものを学習データとする.ここで, LIDAR により取得される3次元点群の座標系は,LIDAR の中心を原点とし,車両の進行方向に対して左右方向を*x* 軸,鉛直方向を*y*軸,前後(奥行き)方向を*z*軸と定める.

^{a)} yamamotot@murase.is.i.nagoya-u.ac.jp

図 2: 提案手法の処理手順.

2.1.1 歩行者点群の統合

まずはじめに,歩行者点群を向き毎に統合する.ここで は,各歩行者点群内の鉛直方向(y 軸)に関して最も値が 小さい点をy = 0,奥行き方向(z 軸)に関して最も小さい 点をz = 0とし,歩行者点群全体を平行移動することで歩 行者位置を正規化する.次に正規化歩行者点群に対し,x軸方向に 1.5 m,y 軸方向に 2.0 m の領域に含まれる点を 抽出する.最後に,これらを向き毎に重ね合わせることで 歩行者点群を統合する.

2.1.2 深度マップの生成

各向きの統合した歩行者点群を用いて歩行者形状モデル と歩行者存在確率を表現する深度マップを生成する.ここ では,統合後の正面向きの歩行者点群から深度マップを生 成する手順を示す.以降の説明において,各文字の右肩の 添字 0,1,2,3 は歩行者の向きを表し,それぞれ正面向き, 背面向き,右向き,左向きを表す.まず,統合した歩行者 点群の領域を x 軸方向に 15 分割, y 軸方向に 20 分割する. 分割後の各セルは 1 辺 W = 0.1 mの正方形であり,水平 および鉛直方向の添字(i = -7, -6, ..., 6, 7, j = 1, 2, ..., 20) により区別される.次に,歩行者形状モデルを表すため, 各セルに属する点の深さの平均 $d_{i,j}^0$ と点の数 $n_{i,j}^0$ を求め る.ただし, $n_{i,j}^0 < 10$ の場合は点が十分に無いため,「深 さ情報なし」として扱い, $d_{i,j}^0 = \infty$, $n_{i,j}^0 = 0$ とする.全セ ルについて $d_{i,j}^0$, $n_{i,j}^0$ を算出した後,次式により正面向き の歩行者における各セルの歩行者存在確率 $s_{i,j}^0$ を求める.

$$s_{i,j}^{0} = \begin{cases} \frac{n_{i,j}^{0}}{\sum_{k,\ell} n_{k,\ell}^{0}} & \text{if } n_{i,j}^{0} \ge 10\\ 0 & \text{otherwise} \end{cases}$$
(1)

そして, $d_{i,j}^0 \geq s_{i,j}^0$ を各セルの特徴量とする.他の向きの 深度マップの生成についても同様である.このようにし て,各向きにおける歩行者形状モデルと歩行者存在確率を 表現する深度マップを生成する.

2.2 スキャン段階

スキャン段階では,学習段階において生成した深度マッ

プを用いて Active Scan LIDAR による歩行者のスキャン を行う.スキャン段階は5つのステップで構成される.以 下の説明では,初期スキャンによる計測点の集合を \mathcal{P}_0 ,m 回目の追加スキャンまでの計測点の集合を \mathcal{P}_m とする. 2.2.1 初期スキャン

初期スキャンの目的は,少数のLASER 光で歩行者を見 つけると同時に,歩行者のおおまかな形状をスキャンする ことである.具体的には,高さhの位置において水平方向 に一定間隔で N₀ 点のLASER 光を照射する.これにより, 高さhにおいて水平方向に比較的高密度な点群を得る. 2.2.2 深度マップを用いた歩行者尤度算出

まず,m回目のスキャンにおいて,得られる計測点 $p \in \mathcal{P}_m$ を考える.ここでは,正面向きの深度マップを用いた歩行者尤度算出の手順を示す.歩行者尤度 $f^0(p)$ は次式のように表される.

$$f^{0}(\boldsymbol{p}) = \frac{1}{|\mathcal{N}(\boldsymbol{p})|} \sum_{\boldsymbol{q} \in \mathcal{N}(\boldsymbol{p})} g^{0}(\boldsymbol{p}, \boldsymbol{q})$$
(2)

 $\mathcal{N}(p)$ はpの近傍点の集合であり, $|\mathcal{N}(p)|$ は $\mathcal{N}(p)$ の要素数を表す. $\mathcal{N}(p)$ は次式により求められる.

$$\mathcal{N}(\boldsymbol{p}) = \{ \boldsymbol{q} \mid \boldsymbol{q} \in \mathcal{P}_m, \\ \mid q_x - p_x \mid \le 0.75, 0 \le q_y \le 2, \mid q_z - p_z \mid \le 1 \}$$
(3)

ただし, $p = (p_x, p_y, p_z)$, $q = (q_x, q_y, q_z)$ である. $g^0(p, q)$ は平均を $\mu = d^0_{i,j} - d^0_{0,\hat{j}}$,分散を σ^2 とした正規分布を用い ることで,次式により計算される.

$$g^{0}(\boldsymbol{p}, \boldsymbol{q}) = \begin{cases} \exp\left(-\frac{((q_{z}-p_{z})-\mu)^{2}}{2\sigma^{2}}\right) & \text{if } d_{i,j}^{0} \neq \infty \\ 0 & \text{otherwise} \end{cases}$$
(4)

ここで, $d_{0,\hat{j}}^0$ は p が属するセル $(0,\hat{j})$ の平均の深さの値で あり, $d_{i,j}^0$ は q が属するセル (i,j) の平均の深さの値であ る.ここで,各セルの添字は次式により求められる.

$$\hat{j} = \left\lfloor \frac{p_y}{W} \right\rfloor \tag{5}$$

$$i = \left\lfloor \frac{q_x - p_x}{W} \right\rfloor, j = \left\lfloor \frac{q_y}{W} \right\rfloor \tag{6}$$

ただし, [.] は床関数を表し, 整数全体の集合を ℤ とする と, 式 (7) により定義される.

$$\lfloor x \rfloor = \max\{n \mid \forall n \in \mathbb{Z}, n \le x\}$$
(7)

以上の処理を, \mathcal{P}_m に含まれる全ての計測点に適用した後,各計測点pの正規化歩行者尤度 $F^0(p)$ を算出する.

$$F^{0}(\boldsymbol{p}) = \frac{f^{0}(\boldsymbol{p})}{\sum_{\boldsymbol{p} \in \mathcal{P}_{m}} f^{0}(\boldsymbol{p})}$$
(8)

他の向きの深度マップを用いた場合の歩行者尤度算出方 法も同様である.

図 3: 計測点の増加と歩行者尤度マップの更新.

2.2.3 歩行者尤度マップの生成

まず,歩行者尤度と各方向における歩行者存在確率を用 いて,局所マップ *m_{i,j}*を計算する.

$$m_{i,j} = F^0(\boldsymbol{p})s^0_{i,j} + F^1(\boldsymbol{p})s^1_{i,j} + F^2(\boldsymbol{p})s^2_{i,j} + F^3(\boldsymbol{p})s^3_{i,j} \quad (9)$$

各局所マップの z 座標の位置は異なるため,そのまま統合 することはできない.そのため,ある z に対して X-Y 平 面を考え,各局所マップをその X-Y 平面に投影する.各 局所マップが重複する領域での尤度は,各局所マップの値 の和となる.上記のように局所マップを統合することによ り,歩行者尤度マップを生成する.

2.2.4 歩行者尤度マップを用いた追加スキャン

生成した歩行者尤度マップに基づいて,追加スキャンを 行う.ここでは,確率的サンプリングにより LASER 光の 照射方向を決定する.

2.2.5 ステップ2~5の反復

深度マップを用いた歩行者尤度算出から歩行者尤度マッ プを用いた追加スキャンまでを反復することで,計測点を 増加させ,歩行者尤度マップを更新させる.図3に示す ように,歩行者尤度マップの更新と確率的サンプリングに 基づく LASER 光照射を繰り返すことで,歩行者を逐次ス キャンする.

3. 実験および考察

本節では,2節で提案したスキャン手法の有効性を確認 するために行った実験について述べる.

3.1 データセット

現在,動的にスキャン位置を制御可能な Active Scan LIDAR は開発段階であるため,高解像度の一様スキャン 型 LIDAR により取得された点群データを利用し,Active Scan LIDAR の機能を模擬した.具体的には,高解像度 LIDAR である Velodyne LiDAR を用いて実環境で収集し た各方向の歩行者の点群データ各 100 個を深度マップ学習 用として,KITTI データセット [2] に含まれる Velodyne LiDAR の歩行者アノテーション付き点群データを評価用 および歩行者認識器の学習用としてデータセットを作成し た.本実験では,KITTIデータセットから車両前方 30 m 以内に存在する歩行者(遮蔽なし)を1人含む点群データ を選択し,車両前方の点群データを切り出した 600 個の点 群データを評価用とした.また,スキャン結果の点群を用 いた歩行者認識精度の評価のため,選択されなかった点群 データから手動で抽出した歩行者点群,非歩行者点群を歩 行者認識器の学習用として用意した.

3.2 実験方法

本実験では、2節で説明した提案手法と、歩行者点群の向 きを考慮しない比較手法1[1]、観測範囲全体にランダムス キャンを反復する比較手法2を用いた.初期スキャンで照 射するLASER 光の照射点数は $N_0 = 300$ 、各追加スキャン で照射するLASER 光の照射点数は $\Delta N = 100$ 、LASER 光総照射点数は $N_{\rm m} = 1,200$ とした.また、提案手法、比 較手法1における初期スキャンの高さは地面を基準として h = 1 m とした.また、式(4)において $\sigma = 0.05$ m、2.2.3 項においてz = 10 m とした.

3.3 評価方法

各点群データに対する各手法のスキャン性能を評価する ために的中率を評価指標として用いた.的中率は照射した LASER 光のうち歩行者に的中した LASER 光の割合を表 す指標であり,LASER 光の照射点数を N_{laser} ,歩行者に 的中した LASER 光による歩行者計測点の数を N_{ped} とす ると,的中率 R_{hit} は次式のように算出される.

$$R_{\rm hit} = \frac{N_{\rm ped}}{N_{\rm laser}} \tag{10}$$

また,スキャン結果の点群を用いた歩行者認識精度を評価するためにROC(Receiver Operating Characteristic) 曲線を評価指標として用いた.本実験では,認識器に利用する特徴量として,スライス特徴量[3]とスライス間の 相対位置[4]を利用し,各手法のスキャン結果の点群から 手動抽出した歩行者点群と,Point Cloud Library [5]の EuclideanClusterExtraction 関数によるクラスタリングを 用いて抽出した非歩行者点群を入力として評価を行った. クラスタリング時のしきい値としては,最小点数を30点, x軸方向の最大左右幅およびz軸方向の最大奥行き幅を1.5 mとした.

3.4 実験結果および考察

図 4,5 に各手法の的中率,ROC 曲線を示す.提案手法 は比較手法1,比較手法2と比べて的中率,ROC 曲線が向 上しており,歩行者を効率的にスキャン可能であることを 確認した.図6に点群取得時の画像と提案手法により取 得できた点群データを示す.図6において,薄紅色の点が

図 4: 各手法における的中率の推移.

図 5: 各手法における ROC 曲線.

歩行者に対応する点,白色の点が歩行者以外に対応する点 である.これらの結果から,提案手法によりスキャンを繰 り返すことにより歩行者にスキャンが集中していくことを 確認できた.

まず比較手法1と比較手法2に注目すると,初期スキャ ンや深度マップを用いることで歩行者にスキャンが集中し ていることが分かる.これは,初期スキャンの範囲をある 高さに限定することで歩行者を確実に計測し,深度マップ を用いることで歩行者が存在する位置を推測し,それに基 づいて次のスキャン位置を決定するためであると考えられ る.次に,提案手法と比較手法1に注目すると,歩行者へ のスキャンがさらに効率的になっていることが分かる.こ れは,深度マップを歩行者の向き毎に生成することで,よ り正確に歩行者の形状を表現可能となり,歩行者尤度算出 の精度が向上したためであると考えられる.

4. むすび

本発表では,向きを考慮した歩行者形状モデルと歩行者 存在確率から推定した歩行者尤度マップに基づく効率的 なスキャン手法を提案した.具体的には,歩行者の向き毎 の形状を学習することで,疎な点群から歩行者が存在する 可能性の高い位置を推定した.そして,その尤度に基づい てスキャン位置を推定し,逐次的にスキャンすることを可

図 6: 点群取得時の画像および提案手法により取得できた 点群データ.

能とした.実環境において収集したデータおよび KITTI データセットを用いたスキャンの模擬実験により,提案手 法はランダムスキャンや向きを考慮しない手法よりも効率 的に歩行者をスキャンできることを確認した.

今後の課題として,深度マップの改良や提案手法により 得られた点群に対するクラスタリング手法および歩行者認 識手法の検討が挙げられる.

謝辞

本研究の一部は,科学研究費補助金による.

参考文献

- T. Yamamoto, F. Shinmura, D. Deguchi, Y. Kawanishi, I. Ide and H. Murase, "Efficient Pedestrian Scanning by Active Scan LIDAR," Int. Workshop on Advanced Image Technology, C4-4, Jan. 2018.
- [2] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? The KITTI vision benchmark suite," Proc. 2012 IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3354–3361, June 2012.
- [3] K. Kidono, T. Miyasaka, A. Watanabe, T. Naito and J. Miura, "Pedestrian recognition using high-definition LI-DAR," Proc. 2011 IEEE Intelligent Vehicles Symposium, pp. 405–410, June 2011.
- [4] 市川善規,出口大輔,井手一郎,村瀬洋,三澤秀明,酒井 映,"低解像度 LIDAR を用いた歩行者検出のための特徴量
 に関する検討,"信学技報,2014-PRMU-55, Oct. 2014.
- [5] R.B. Rusu and S. Cousins, "3D is here: Point Cloud Library (PCL)," Proc. 2011 IEEE Conf. on Robotics and Automation, pp. 1–4, May 2011.