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Abstract

Native Japanese people can distinguish gaits based on
their appearances and briefly express them using various
onomatopoeias to express their impressions intuitively. It is
said that Japanese onomatopoeias have sound-symbolism
and their phoneme is strongly related to the impression of
a motion. Thus, we considered that if a phonetic space
based on sound-symbolism can be associated with the ki-
netic feature space of gaits, subtle difference of gaits could
be expressed as difference in phoneme. This framework is
expected to make human-computer interaction more intu-
itive. In this paper, we propose a method to convert the rela-
tive body-parts movements to onomatopoeias using a deep-
learning based regression model. Through experiments, we
confirmed the effectiveness of the proposed method, and dis-
cussed the potential of describing an arbitrary gait by not
only existing onomatopoeias but also a novel one.

1. Introduction

Onomatopoeia is a formation of a word from a sound as-

sociated with what is named. Most English onomatopoeias

are actually used for imitation of sounds such as bow-wow
or tic-tac. The Japanese language is known to have a greater

number of onomatopoeias not only to imitate sounds but

also to represent feelings or intuitive impressions of various

phenomena. Researchers have focused on Japanese ono-

matopoeias representing the texture of an object to under-

stand the mechanism of cross-modal perception and apply

it to information systems. Human motion, especially gait, is

a visually dynamical state most commonly represented by

onomatopoeias, but it still has not attracted attention from

any researchers in the field of computer science. A native

Japanese speaker can easily distinguish gaits based on their

appearances and express them briefly using various ono-

matopoeias in order to express their impressions intuitively.

In this paper, we focus on gaits and propose a computational

method to convert the kinetic features to onomatopoeias.

Japanese onomatopoeias are referred to as sound-

symbolic words, which involve the association between lin-

guistic sounds and sensory experiences [4]. The phonemes

of an onomatopoeia should be strongly related to the visual

sensation when observing a gait so that the onomatopoeias

can describe the difference in the appearance of gaits at

a fine resolution [3]. In the Japanese language, it is said

that there are more than fifty gait-related onomatopoeias.

For example, according to a Japanese onomatopoeia dic-

tionary [6], noro-noro means “slowly walk without hav-

ing a vigorous intention to move forward,” and yoro-yoro
means “walk with an unstable balance.” Their difference of

only one sound, i.e. /n/ or /y/, can represent a slight dif-

ference in gaits. In addition, suta-suta means “walk with

light steps without observing around,” and seka-seka means

“trot as being forced to hurry.” As we can see from these

examples, the phoneme /s/ seems to express an impression

of fast, smooth, and stable motion. Such associations are

individual-invariant and linguistic-invariant similar to the

Bouba/kiki-effect [7].

Inspired by this cross-modal perception, we attempt to

form a computational model that describes an arbitrary gait
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by an onomatopoeia. If a phonetic space simulating the

sound-symbolism can be constructed and associated with a

kinetic feature space of gaits, difference of gait impressions

can be computationally expressed as difference in phoneme.

This framework enables us to assign not only the existing

onomatopoeias but also a novel one generated from an arbi-

trary combination of phonemes to the gaits. The former is a

classification task (see Section 5.2) and the latter is regarded

as a kind of zero-shot translation task (see Section 5.3).

We can apply the proposed method to human-computer

interaction. It makes the interaction more intuitive as

Sakamoto et al. [8] revealed that their onomatopoeia

quantification system is useful for communication between

Japanese patients and foreign doctors. As an example of the

application, an advanced driver assistance system can warn

the driver of a specific pedestrian by intuitively expressing

his/her gait by an onomatopoeia, which they should imme-

diately pay attention to. Also, it can be used to understand

eyewitness testimonies including an onomatopoeia of gait

in an interactive surveillance system in order to identify

pedestrians with such gaits in videos. Such applications

which use onomatopoeias as an attribute of motion would

be available for even those who do not speak the language

owing to the sound-symbolism.

Our contributions are twofold: (1) We motivate the focus

on onomatopoeias representing visually dynamic states, (2)

We propose a computational model to associate the kinetic

feature space of gait with the phonetic space simulating the

sound-symbolism, and the model can also describe a gait

by a novel onomatopoeia generated from an arbitrary com-

bination of phonemes. The rest of the paper is composed as

follows: Related work is introduced in Section 2. Section 3

describes the proposed method that converts human gaits to

onomatopoeias. More concretely, it projects the kinetic fea-

tures into the phonetic space using a deep learning based

regression model. Section 4 introduces the dataset used for

evaluation. Section 5 reports results from two experiments

of classification and zero-shot translation, and in Section 6,

we discuss the experimental results. Finally, the paper is

concluded in Section 7.

2. Related work
There are some previous works on onomatopoeias asso-

ciated with auditory, visual, and tactile modality in the field

of computer science.

Sundaram et al. proposed a “meaning space” having the

semantic word based similarity metric that can be used to

cluster acoustic features extracted from audio clips tagged

with English onomatopoeias [10]. They also constructed

a latent perceptual space using audio clips categorized by

high-level semantic labels and the mid-level perceptually

motivated onomatopoeia labels [11]. Fukusato et al. pro-

posed a method to estimate an onomatopoeia imitating a

Training the regression model

Body-Parts detection

Phonetic vector

Video
Training phase Description phase

Quantization

Projection to
the phonetic space

Videos Onomatopoeias

Kinetic feature
calculation

Body-Parts detection
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Figure 1. Procedure of the proposed method.

collision sound (e.g. “Bang”) from physical characteris-

tics of the objects [2]. Shimoda et al. demonstrated that

Web images searched with different onomatopoeias have

discriminable visual features [9]. Doizaki et al. proposed

an onomatopoeia quantification system [1] which is based

on sound-symbolism and quantifies onomatopoeias based

on prior subjective evaluations using 26 opposing pairs of

tactile adjectives such as “hard – soft”.

These works target onomatopoeias imitating sounds or

representing visually static states. Meanwhile, as men-

tioned in Section 1, in this paper, we attempt to computa-

tionally describe human gaits as visually dynamic states by

onomatopoeias.

3. Gaits description by onomatopoeias

The procedure of the proposed method is shown in Fig-

ure 1. In our method, we map the kinetic features extracted

from videos to the phonetic space by regression. It consists

of the training phase and the description phase. In the fol-

lowing subsection, we explain in detail the kinetic features,

the phonetic space, and the regression model.

3.1. Body parts detection and kinetic feature
extraction

Li et al. proposed an algorithm for fine-grained classifi-

cation of walking disorders arising from neuro-degenerative

diseases such as Parkinson and Hemiplegia, by referring to

relative body-parts movement [5]. In line with this work,

we use kinetic features based on the relative movement of

body parts.

As a preprocess, we need to detect the body parts of a

pedestrian from videos. Here, we use Convolutional Pose

Machines (CPM) [13]. CPM is an articulated pose estima-

tion method based on a deep learning model. It can detect

14 parts of human body, and yields their pixel coordinates.

Figures 2(a) and (b) show an example of the original video

frame and the corresponding result of parts detection using

CPM, respectively.

First, we apply CPM to each frame of an input video
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Table 1. Phoneme quantization by eight attributes on impression of phoneme [12].

Hardness Intensity Humidity Fluidity Roundness Elasticity Speed Warmth

/a/ 0 1 −1 1 2 −2 −1 0

/i/ 2 2 0 0 −1 1 2 −1

Vowel /u/ −1 −1 2 0 2 2 0 2

/e/ 1 −2 2 0 −2 0 0 2

/o/ −1 2 0 1 2 0 −2 1

/k/ 2 2 1 0 0 0 2 −1

/s/ 2 0 1 2 0 0 2 −1

/t/ 2 1 2 2 0 1 −1 −2

/n/ −1 0 2 −1 1 0 −2 2

/h/ −2 −2 1 0 1 −1 −1 2

/m/ −2 −2 1 0 2 0 −1 2

/y/ −2 −1 0 1 2 1 0 0

Consonant /r/ −1 −1 2 1 0 2 1 0

/w/ −2 2 1 0 2 0 0 1

/g/ 3 3 0 −1 −1 0 1 −1

/z/ 3 1 0 1 −1 0 1 −1

/d/ 3 2 1 1 −1 1 −2 −2

/b/ −1 −1 0 −1 0 −1 −2 2

/p/ −3 −3 1 0 2 0 0 3

Contracted sounds −1 −1 +1 ±0 +1 +2 +2 +1

Doubled consonants ±0 ±0 ±0 ±0 ±0 ±0 +1 ±0

(a) Original video frame. (b) Parts detection result.

Figure 2. Example of body parts detection using CPM [13].

and obtain 14 sequences of pixel coordinates P (p, t) ∈ R
2.

Here, p ∈ {0, . . . , 13} indicates the index of each body part,

and t ∈ {1, . . . , T} indicates the index of each video frame

where the length of the input video is T . Next, we calculate

the Euclidean distance Dp1,p2(t) between arbitrary pairs of

parts p1 and p2. Then, we calculate the human height H(t),
namely, the difference in y-coordinates between head and

foot, and their average in the sequence H̄ . Finally, we di-

vide all of Dp1,p2
(t) by H̄ , and obtain a sequence of the

normalized body-parts distance Lp1,p2(t). Note that the

number of combinations of p1 and p2 under the condition

p1 < p2 is 14C2 = 91.

3.2. Phonetic space

In order to construct the phonetic space, we need to

quantize phonemes based on sound symbolism. The ono-

matopoeia quantification system by Doizaki et al. [1] seems

to be an appropriate reference for our objective. Unfortu-

nately, the parameters of the state-of-the-art system are not

publicly available, and also, it is difficult to reconstruct the

system accurately because we need to conduct a large scale

subjective experiment. Thus, we decided to refer to another

quantization proposed by Tomoto et al. [12], which is pub-

licly available. They have argued each Japanese phoneme

can be represented by an 8-dimensional vector consisting of

eight attributes on the impression of phonemes: hardness,

intensity, humidity, fluidity, roundness, elasticity, speed,

and warmth.

Table 1 shows the correspondence between each

phoneme and the values of an 8-dimensional vector [12].

This table covers all vowels, all consonants, contracted

sounds, and double consonants in Japanese. The contracted

sounds, e.g. /ky/, /sy/, are consonants accompanied by the

consonant /y/. The double consonants, e.g. /kk/, /ss/, make

the pronunciation of the preceding vowel shorter. When

such consonant variation occurs, the vectors of contracted

sounds and double consonants will have values modified by

adding the weights to the values of the original consonant.

Based on the table, Tomoto et al. [12] proposed a

32-dimensional phonetic vector for “ABCD-ABCD”-type

onomatopoeias, which composes the majority of ono-
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Table 2. Selected onomatopoeias and their meanings [6].

Onomatopoeia Meaning

suta-suta Walk with light steps without observing around

noro-noro Slowly walk without having a vigorous intention to move forward

yoro-yoro Walk with an unstable balance

dossi-dossi Walk with one’s weight by stepping on the ground forcefully

seka-seka Trot as being forced to hurry

teku-teku Walk by firmly stepping on the ground for a long distance

tobo-tobo Walk with dropping one’s shoulder for a long distance

noshi-noshi Walk with heavy steps forcefully

yota-yota Walk with weak steps as with an elderly or a patient

bura-bura Walk without having any intention

91 32

Time series

OutputsInputs Conv. Conv. (Phonetic vector)(Body-parts distances)

Figure 3. Overview of the regression model.

matopoeias representing gaits such as suta-suta and yoro-
yoro. First, they decompose an “ABCD-ABCD”-type ono-

matopoeia into two sets of four phonemes. For example,

suta-suta can be decomposed into “/s/, /u/, /t/, /a/” and

“/s/, /u/, /t/, /a/.” Next, they focus on only one set of

the four phonemes and translate each phoneme into an 8-

dimensional phonetic vector according to Table 1. Finally,

they concatenate the four phonetic vectors, which yields a

32-dimensional phonetic vector. We use this phonetic vec-

tor to construct the 32-dimensional phonetic space.

3.3. Regression model

As a regression model, we use a 1-dimensional Convolu-

tional Neural Network (CNN). Figure 3 shows the overview

of the model. We aim to analyze the temporal change of

the body-parts movement on multiple time-scales by using a

temporal convolution process. The input data is 91 (=14C2)

sequences of body-parts distance Lp1,p2(t), and the num-

ber of units in the input layer is T . Here, we handle each

sequence as a channel. The supervisory data in the train-

ing phase and the output data in the description phase are

32-dimensional phonetic vectors. The network architecture

of the regression model is explained in more detail in Sec-

tion 5.2.

We project the kinetic features to the phonetic space by

using this model. In other words, this process is regarded as

a spatial transformation.

Approx. 5 m Approx. 20 m
Walking section

Pedestrian Camera

Figure 4. Video recording environment.

4. Dataset

We constructed a dataset that includes videos recording

human gaits and their onomatopoeia labels. In this sec-

tion, we introduce the video recording session and the ono-

matopoeia labeling experiment.

4.1. Video recording

The video recording was made over a single actor at a

time. Figure 4 shows the environment of the video record-

ing. The walking section was approximately five meters

long.

Seven actors who were native Japanese University stu-

dents in their twenties were asked to walk with a gait rep-

resenting an onomatopoeia back and forth the walking sec-

tion. Table 2 shows a list of instructed onomatopoeias and

their meanings for reference. The ten onomatopoeias ex-

press typical impression of gaits, which were chosen from

56 onomatopoeias of gaits appeared in a Japanese ono-

matopoeia dictionary [6]. We recorded some ordinary gaits

as well. Finally, we recorded 158 gaits (79 from front of the

actors and the paired 79 from back).

The videos were taken at a rate of 60 fps, 527×708 pix-

els resolution, and 8-bit color. We used a USB 3.0 camera

Flea31 produced by Point Gray Research, Inc. The camera

was set approximately twenty meters away from the termi-

nation of the walking section to suppress the scale variation

of body appearance due to walking along the optical axis of

the camera.

1Sensor size: 2/3 inch, Focal length of lens: 35 mm.
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Table 3. Result of subjective experiment.

Instruction Number of labeled videos

to pedestrian suta noro yoro dossi seka teku tobo noshi yota bura Total

Ordinary 5 0 0 0 0 6 0 0 0 0 11

suta 11 0 0 0 4 2 0 0 0 0 17

noro 0 5 0 0 0 0 2 0 0 2 9

yoro 0 0 7 0 0 0 0 0 2 2 11

dossi 0 0 0 7 0 1 0 1 0 0 9

seka 1 0 0 0 3 0 0 0 0 0 4

teku 1 0 0 0 1 1 0 0 0 0 3

tobo 0 0 0 0 0 0 3 0 0 0 3

noshi 0 1 0 0 0 0 2 0 1 0 4

yota 0 0 2 0 0 0 2 0 0 0 4

bura 0 0 1 0 0 0 0 0 0 2 3

Total 18 6 10 7 8 10 9 1 3 6 78

How does the gait seem? (Multiple selections allowed)

suta-suta
seka-seka
teku-teku
dossi-dossi
tobo-tobo
noshi-noshi
noro-noro
bura-bura
yota-yota
yoro-yoro

Next

Figure 5. Annotation tool.

4.2. Onomatopoeia labeling

Although we asked the actors to walk with gaits rep-

resenting specific onomatopoeias, they could not always

move their bodies as they intended because they were not

skilled actors. Thus, we should not use the instructed ono-

matopoeia as the ground-truth label of the corresponding

gait. In order to annotate the gait recorded in each video,

we conducted a subjective experiment and asked evaluators

to annotate the videos with onomatopoeias.

Fourteen evaluators who were native Japanese Univer-

sity students in their twenties watched 79 videos show-

ing the gaits from the front and annotated each video with

zero or more labels which were selected from the ten ono-

matopoeias shown in Table 2. Figure 5 shows the annotation

tool. Seven evaluators were assigned to each video. Each

onomatopoeia was annotated when the majority of the eval-

uators selected it. The result is shown in Table 3, whose

rows indicate the onomatopoeias instructed to the actors,

and columns indicate the labeled results. Note that the to-

tal number of labels in Table 3 does not match the number

of videos (= 79) because some videos were annotated with

Dataset sequence

T = 100 frames (1.67 sec.)s [frames]
Figure 6. Extraction of samples from video sequence.

multiple or no onomatopoeias. Finally, the same label was

assigned to the video showing the gaits from the back paired

with the front.

If a video was annotated with various onomatopoeias,

we assigned the onomatopoeia having the most votes to the

video as the ground-truth label, and unfortunately, only a

few videos were assigned to two classes noshi-noshi and

yota-yota as shown in Table 3, so only the other eight

classes were used in the following experiments.

5. Experiments

In this section, we report the result of two experiments.

The first one is a multiclass-classification experiment for

evaluating the performance of the regression model. The

second one is a zero-shot translation experiment for describ-

ing gaits by an existing onomatopoeia or a novel one.

5.1. Sampling

Before conducting the experiments, we sampled train-

ing and test data from the dataset. Since the length of

video sequences in the dataset are uneven, we sampled sub-

sequences with a fixed length T [frames] defined in Sec-

tion 3.1 by shifting the initial frame every s [frames]. As
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Table 4. Network architecture of the proposed method using 1-

dimensional CNN.
Input Units: 100 Channels: 91

Convolution 1 Kernel size: 10 Channels: 128

Max-pooling size: 10

Convolution 2 Kernel size: 10 Channels: 128

Max-pooling size: 10

Output Units: 32

Table 5. Network architecture of the comparative method 1 using

LSTM.
Input Length: 100, Units: 91

Fully-connect Units: 100

LSTM Units: 100

Output Units: 32

shown in Figure 6, we set the length T as 100 frames (1.67

sec.) so that it should contain one cycle of walking, i.e.

two steps. The parameter s was changed according to each

onomatopoeia class so that the number of samples should

become roughly even among all the classes. In the follow-

ing, we set s as five frames for the onomatopoeia class with

the shortest sequence of videos.

5.2. Multiclass-classification on the phonetic space

To evaluate the regression model, we conducted multi-

class classification on the phonetic space. A feature vec-

tor projected on the phonetic space was classified to one

of the eight classes using a Nearest Neighbor method.

The accuracy was calculated in a leave-one-actor-out cross-

validation scheme that uses the samples extracted from the

videos of an actor as test data and the others as training data

until all the actors were used for testing.

We employed two comparative methods. One used a

Long Short Term Memory (LSTM) model instead of the

1-dimensional CNN. Another applied a linear Support Vec-

tor Regression (SVR) to the following statistical features:

temporal variance and kurtosis of the body-parts distance

Lp1,p2
(t). The 1-dimensional CNN and the LSTM were

implemented using Keras2 whose network architectures are

shown in Tables 4 and 5, respectively.

Table 6 shows the comparison in accuracy between the

proposed and the comparative methods. Note that the base-

line (chance level) accuracy is 0.125. We confirmed that the

proposed method achieved the highest accuracy.

5.3. Zero-shot translation from gait
to onomatopoeia

As a more challenging task, we conducted a zero-shot

translation from a gait to an existing onomatopoeia or a

novel one generated from an arbitrary combination of pho-

netic vectors using the proposed method. It can be carried

2https://keras.io./

Table 6. Accuracies of multiclass-classification.
Method Accuracy

Proposed (1-dimensional CNN) 0.474
Comparative 1 (LSTM) 0.334

Comparative 2 (Linear SVR) 0.338

Baseline (Chance level) 0.125

out by a leave-one-onomatopoeia-out cross validation that

uses the samples extracted from the videos assigned to an

onomatopoeia class as test data and the others as training

data until all the onomatopoeia classes are used for testing.

For example, when we use suta-suta labeled gaits as test

data, the regression model is trained using the gaits labeled

with onomatopoeias other than suta-suta. Thus, suta-suta is

regarded as an unknown onomatopoeia in this case. We ver-

balized each phoneme of test data projected on the phonetic

space with a Nearest Neighbor method. More concretely,

we divided the projected 32-dimensional phonetic vector

into four 8-dimensional phonetic vectors, and selected a

vowel or a consonant nearest to each of them based on Ta-

ble 1. This process can generate a novel onomatopoeia by

an arbitrary combination of phonetic vectors.

Tables 7 and 8 show examples of translation results by

the proposed method and the representative onomatopoeia

generated from the median vector of the projected vectors

by each of the proposed and the comparative methods in

each validation, respectively. In the tables, “*” indicates a

novel onomatopoeia that does not appear in the Japanese

onomatopoeia dictionary as gait-related onomatopoeias.

To evaluate the results of the zero-shot translation, we

conducted a subjective evaluation. We showed the ground-

truth and the representative onomatopoeias generated by

the proposed and the comparative methods (see Table 8)

to seven subjects who were native Japanese University stu-

dents in their twenties, and asked them to select the more

similar one to the ground-truth. The result is shown in Ta-

ble 9. Note that when both methods generated the same

onomatopoeia in the cases of bura-bura of the proposed

method versus comparative method 1 and teku-teku of the

proposed method versus comparative method 2, we re-

garded the selection rate as 0.5 because we could not judge

the superiority of either methods. As shown in the table,

the proposed method achieved better selection rate greatly

over 0.5 for both comparison methods. We confirmed that

the proposed method has the potential of describing an ar-

bitrary gait by not only an existing onomatopoeia but also a

novel one.

6. Discussion

The proposed method learns the relationship between the

kinetic features and the phonetic features using a regres-

sion model to classify the gaits to the onomatopoeia classes.
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Table 7. Examples of zero-shot translation by the proposed

method.
Ground-truth Description Distance

suta-suta seka-seka 27.8

suta-suta *teka-teka 31.3

suta-suta *sura-sura 31.8

noro-noro yoro-yoro 16.8

noro-noro *yuro-yuro 23.6

noro-noro *roro-roro 24.7

yoro-yoro noro-noro 18.7

yoro-yoro *nora-nora 23.5

yoro-yoro *toro-toro 25.0

dossi-dossi *tuko-tuko 68.0

dossi-dossi *toro-toro 69.4

dossi-dossi *sotto-sotto 71.0

seka-seka *sutta-sutta 27.7

seka-seka *sutto-sutto 28.2

seka-seka *tuto-tuto 35.1

teku-teku *sutta-sutta 64.9

teku-teku *totta-totta 71.0

teku-teku *tura-tura 74.3

tobo-tobo *roro-roro 46.2

tobo-tobo noro-noro 48.4

tobo-tobo *toso-toso 52.4

bura-bura *rutyo-rutyo 26.6

bura-bura noro-noro 27.9

bura-bura *moro-moro 34.1

Table 8. Representative onomatopoeias generated from the median

vectors of the projected vectors by the proposed and the compara-

tive methods.

Ground-truth Proposed Comp. 1 Comp. 2

suta-suta *teko-teko *toro-toro *toro-toro
noro-noro *toro-toro *tura-tura *tuso-tuso
yoro-yoro noro-noro *tuso-tuso *tusa-tusa

dossi-dossi toko-toko yoro-yoro *suko-suko
seka-seka *sutta-sutta *toro-toro *toro-toro
teku-teku *toro-toro *sutta-sutta *toro-toro
tobo-tobo yoro-yoro *tusa-tusa *turo-turo
bura-bura noro-noro noro-noro *toro-toro

To obtain better accuracy of the multiclass-classification, it

might be better off learning the direct relationship between

the kinetic features and the onomatopoeia labels using a

classification model. Here, we compare the multiclass-

classification accuracy of the proposed method with a more

end-to-end classification method. To realize the latter

one, we replaced the output layer having 32 units of 1-

dimensional CNN shown in Table 4 with eight units cor-

responding to eight onomatopoeia classes and trained the

modified CNN from scratch. It can output one of eight ono-

matopoeias without using the phonetic space. As the result

of multiclass-classification, we obtained 0.471 for the ac-

Table 9. Selection rates of representative onomatopoeias generated

by the proposed method.

Onomatopoeias vs. Comp. 1 vs. Comp. 2

suta-suta 1.000 1.000

noro-noro 1.000 1.000

yoro-yoro 1.000 1.000

dossi-dossi 0.857 0.286

seka-seka 1.000 1.000

teku-teku 0.000 0.500

tobo-tobo 1.000 0.714

bura-bura 0.500 0.286

Average 0.795 0.723

Table 10. Comparison of classification results with a smaller

dataset.
s [frames] Proposed Comp. 1 Comp. 2

5 0.474 0.334 0.338

10 0.429 0.299 0.341

curacy of the more end-to-end classification method, which

was almost the same as the proposed method. The result

implies the proposed method has more general capability of

onomatopoeia expression with a higher degree of freedom.

Next, we analyzed whether the accuracy of the proposed

method depends on the number of training data. We conduct

the same experiment as in Section 5.2 but with smaller sam-

ples. In Section 5, we set the parameter s for sampling data

as five frames for the onomatopoeia class with the short-

est sequence of the videos. Here, we set the minimum of

s at ten frames so that the number of samples becomes ap-

proximately 45% smaller. Table 10 shows the result. Com-

parative method 2 based on linear SVR kept the accuracy

whereas in the other methods the accuracy was degraded.

The result implies that the proposed method and compara-

tive method 1 based on LSTM have the potential to improve

the accuracy by enlarging the dataset size.

7. Conclusions
In this paper, we proposed a method for describing hu-

man gaits by onomatopoeias, which uses a kinetic fea-

ture, a phonetic space, and a 1-dimensional CNN regression

model. We conducted two experiments, namely, multiclass-

classification and zero-shot translation task, and confirmed

the effectiveness of the proposed model.

The most critical limitation of this work is insufficient

size of data. To solve the problem, we will attempt to

acquire a larger data of onomatopoeia-labeled gaits us-

ing crowdsourcing and introduce transfer learning to train

the CNN. Some temporal models (e.g. action recognition

model) might be available for the latter approach.

Beyond describing human gaits by onomatopoeias, we

will consider generating motions from onomatopoeias as

the reverse framework to this work. It should be useful
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for producers of computer graphics, operators of humanoid

robots, and so on.
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