Action Recognition from Extremely Low-Resolution Thermal Image Sequence
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Abstract

This paper proposes a Deep Learning-based action
recognition method from an extremely low-resolution ther-
mal image sequence. The method recognizes daily actions
by humans (e.g. walking, sitting down, standing up, etc.)
and abnormal actions (e.g. falling down) without privacy
concerns. While privacy concerns can be ignored, it is diffi-
cult to compute feature points and to obtain a clear edge of
the human body from an extremely low-resolution thermal
image. To address these problems, this paper proposes a
Deep Learning-based action recognition method that com-
bines convolution layers and an LSTM layer for learning
spatio-temporal representation, whose inputs are the ther-
mal images and their frame differences cropped by the grav-
ity center of human regions. The effectiveness of the pro-
posed method was confirmed through experiments.

1. Introduction

Since the number of elderly people living alone is in-
creasing in recent years, it is becoming necessary to provide
them with support. Medical professionals believe that ana-
lyzing the human behavior and finding changes in the Activ-
ities of Daily Living (ADL [18]) are important for detecting
physical and mental health problems before they become
critical. Since it is difficult for nurses or families to moni-
tor elderly people constantly, automatic monitoring systems
are expected to be developed for recognizing their daily ac-
tivities. For an elderly person who lives alone, it is also re-
quired to find his/her abnormal actions such as falling down.
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Figure 1. 16 x16 far-infrared sensor array.
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(b) Extremely low-resolution thermal image

(a) Visible-light image

Figure 2. Example of images captured by a visible-light camera
and a 16x 16 far-infrared sensor array.

To realize such monitoring systems, we are considering
the usage of a far-infrared sensor array [13]. Figure 1 shows
a 16x16 far-infrared sensor array. It is a very low price
sensor integrating multiple thermopile infrared sensors into
a grid. Although the output image of the far-infrared sen-
sor array is quite noisy due to its mechanism, it can capture
spatial distribution of temperature as a thermal image by de-
tecting far-infrared waves emitted from heat sources. It also
works even at night-time without any light source. Exam-
ples of its output are shown in Figure 2 (b) and Figure 3 (b).
As we can see, the images are in extremely low-resolution
(16x16 pixels), so individuals cannot be easily identified.
Therefore, it is possible to use the sensor for monitoring a
person constantly day and night without privacy concerns.

While privacy concerns can be ignored, visual informa-
tion obtained from extremely low-resolution images is lim-
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Figure 3. Example of images captured at night-time.

ited. Therefore, it is difficult to compute feature points and
to obtain a clear edge of the human body from it. More-
over, the pixel values will be easily affected by factors such
as the motion of a person and the distance between the sen-
sor and the human body. Therefore, most conventional ac-
tion recognition methods using a visible-light camera are
not suitable for being applied to extremely low-resolution
thermal image sequences.

To overcome the above-mentioned problems, this paper
proposes a recognition method for both daily human actions
(e.g. walking, sitting down, standing up, etc.) and abnormal
actions (e.g. falling down) from extremely low-resolution
thermal image sequences obtained from a far-infrared sen-
sor array mounted on the ceiling. Since abnormal actions
will occur anywhere in the room, the method needs to rec-
ognize actions regardless of positions. In order to recognize
actions from an extremely low-resolution thermal image se-
quence, focusing on shapes of human body and its temporal
variation should be important. Therefore, this paper tries to
overcome these problems by a CNN+LSTM (Long Short
Term Memory [7]) approach extending the Long-term Re-
current Convolutional Network (LRCN) model [4].

In the rest of this paper, related works are described in
Section 2, characteristics of extremely low-resolution ther-
mal image sequences are described in Section 3, details of
the proposed method are presented in Section 4, and evalu-
ation results are described in Section 5. Finally, Section 6
concludes this paper.

2. Related works

There are only few works on action recognition using
a far-infrared sensor array. Toriyama et al. [16] proposed
“Thermal Region of Interest” and “Spatial Region of Inter-
est” to recognize a hand waving gesture, but they did not
consider other body actions. Hevesi et al. [5] referred to
the change in sensor output values to recognize household
activities. However, they assumed only activities related to
specific areas in the room. This approach that considered
positional information of the activities is effective but could
not recognize position-independent actions such as falling
down.

On the other hand, there are many works related to
vision-based action recognition using a visible-light cam-
era [1]. Especially, Deep Learning-based methods have

been proposed and yielded high performance in recent
years. In some works [10, 15], CNN is used in order to
learn spatial features of actions. For example, Ji ef al. [8]
proposed 3D-CNN to learn spatio-temporal features over an
image sequence directly. However, methods using a visible-
light camera require a relatively high-resolution image se-
quence as input, and optical flow or trajectory features [17]
are usually used. Since it is difficult to compute feature
points from extremely low-resolution images captured by a
far-infrared sensor array, these methods cannot be applied to
the thermal image sequences. Donahue ef al. [4] introduced
LRCN model that combines CNN and LSTM to learn long-
term dependencies. This model is end-to-end trainable and
pre-trained on a larger object recognition dataset. However,
if images captured by a ceiling sensor are directly input to
the network, there is a possibility that the network learns the
position dependency rather than the motion feature. This
would be noticeable when the number of learning data were
small. Since it is impossible to repeat the pooling process
or apply a large-size kernel to an extremely low-resolution
image, the conventional CNN architectures are not suitable
for our purpose.

There are several works that consider privacy through
the use of extremely low-resolution visible-light videos.
Ryoo et al. [14] introduced the concept of “Inverse super
resolution” and generated a set of low-resolution images
from a high-resolution image for effective learning of CNN.
Chen et al. [2] proposed ideas of using two-stream CNN
and sharing filters between extremely low-resolution and
high-resolution images during training for effective learn-
ing. However, since both methods require high-resolution
images in training, we cannot apply these methods to low-
resolution images from a far-infrared sensor array. Dai et
al. [3] use an [ nearest-neighbor classifier to discriminate
action sequences. However, a large amount of training data
is required to obtain accurate results by the nearest-neighbor
method, or else the shift of one pixel greatly influences the
result of template matching in extremely low-resolution im-
ages.

3. Characteristics of extremely low-resolution
thermal image sequences

Extremely low-resolution thermal image sequences ob-
tained from a far-infrared sensor array have several charac-
teristics (c.f. Figure 4).

The edge of the human body does not appear clearly.

e The motion of a person changes the pixel values of
both the human body and its surrounding region.

When the distance between the sensor and the human
body changes, the pixel values also change.

A pixel value changes depending on the occupancy
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Figure 4. Example of a thermal image sequence.

area ratio of the human body in the observation range
of a thermopile infrared sensor.

Although it is difficult to define and calculate hand-crafted
features considering these characteristics, it is important to
focus on the rough shape of the human body and its tempo-
ral variation to recognize actions. We also consider that the
motion of a person can be represented by frame difference.

4. Action recognition from an extremely low-
resolution thermal image sequence

In this paper, we propose a Deep Learning-based action
recognition method from an extremely low-resolution ther-
mal image sequence. The following points are considered
for this:

e To cope with extremely low-resolution thermal image
sequences, the network structure is modified to a spe-
cialized CNN for extremely low-resolution inputs.

e To learn spatio-temporal representations, convolution
layers for extracting appearance features and an LSTM
layer for learning temporal dependencies are com-
bined.

e To extract position invariant features, input images are
cropped by the gravity center of human regions, and
the network input are extended by adding frame differ-
ences as an additional channel to extract motion fea-
tures from extremely low-resolution thermal images.

Details are described in the following sections.

4.1. Pre-processing of an extremely low-resolution
thermal image sequence

To recognize actions independent of the position they oc-
curred, the proposed method firstly aligns images by the
gravity center of human regions. Then, the pixel values of
images are normalized to make it robust against temperature
change of the environment.

(a) Before normalization

(b) After normalization

Figure 5. Effect of normalization.

First, for each image sequence, a sequence of binary sil-
houettes are extracted by Gaussian Mixture Model (GMM)-
based background subtraction [9]. Then, the gravity center
of the silhouette is calculated from each image of the binary
silhouette sequence. They are considered as the positions of
the human body region in each image.

Next, each thermal image sequence {I;}7_, is normal-
ized. Here, T is the length of a sequence (different depend-
ing on sequence), and I (i, j) represents the pixel value at
pixel (4, j) of image I; as:

L) = Mo om, (n
where M and m are the maximum and the minimum pixel
values over an entire image of each sequence, respectively.
Figure 5 shows examples of the effect of normalization. The
normalization gives robustness against environmental vari-
ations, and makes a human body and the environment more
clearly separable. Frame difference images {D;}]; are
calculated from the normalized image sequence as follows:

= |1,(i,7) — L1 (i, §), )

Finally, a fixed-size region around the gravity center of
a human region is cropped from each image in a sequence.
In more detail, an image of Rx R pixels around the grav-
ity center is cropped. Similarly, an image of Rx R pixels is
cropped from each frame difference in the sequence. Here,

Dt<i?j)
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Figure 6. Proposed network architecture. The kernel size and the
number of channels or the units of each layer are shown. Note that
in each convolution layer, padding is applied.

R = 10 is used so that the entire human body region should
be included in each image. This cropping can reduce the
influence of cluttered background. These cropped thermal
and frame difference image sequences are input to the net-
work. Figure 4 shows examples of each sequence.

4.2. Deep learning-based action recognition

In order to learn spatio-temporal representations, con-
volution layers and an LSTM layer are combined. As ex-
plained section 2, since the conventional CNN architectures
are not suitable for extremely low-resolution images, we
propose a redesigned network architecture using three con-
volution layers, two fully-connected layers, and an LSTM
layer as show in Figure 6. In each convolution layer, the
stride of the kernels is 1. Moreover, in convolution layers 1
and 2, maxpooling is applied with a stride of 2. Rectified
Linear Units (ReLU) [12] is used as the activation func-
tion for the convolution and fully-connected layers. Also,
sigmoid function is used as the activation function for the
LSTM layer, and a softmax function is used for the output
layer.

As shown in Figure 6, there are two input channels for
the network. A thermal and a frame difference image pair is
input to the network at each time step, and the network also
predicts an action class at each time step. The output of the
last frame is adopted as the final classification result, since
it takes into account the temporal variations over all frames
of a sequence.

Cross-entropy loss function is used to train the network.
Kernels, weights, and biases are initialized with random val-
ues. Adam [11] is used as the optimization algorithm. The
dropout [6] with a ratio of 0.2 is also applied to the two
fully-connected layers for enhancing the generalization ca-
pability.

5. Experiment and discussions

To confirm the effectiveness of the proposed method,
an experiment was conducted using actual extremely low-
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(d) Falling down

Figure 7. Examples of human actions from the dataset.

Figure 8. Example of “Falling down” in the dark.

resolution thermal image sequences. The sequences were
captured using a 16x 16 far-infrared sensor array (Thermal
sensor D6T-1616L by OMRON Corp.). The frame rate was
10 fps. The dataset and the experimental conditions are de-
scribed below, followed by report and discussion on the re-
sults.

5.1. Extremely low-resolution thermal image se-
quence dataset

Figure 7 shows examples of human actions from the
dataset!. It was captured by the sensor mounted on the ceil-

IThis dataset will be opened to the public.



\ Overall

H No action \ Walking \ Sitting down \ Standing up \ Falling down ‘

Proposed 91.07% 94.35% | 97.50% 74.72% 89.17% 93.06%
Thermal only | 85.75% 92.78% | 83.89% 74.44% 75.28% 88.33%
Diff. only 82.34% 98.80% | 96.11% 42.22% 68.06% 73.61%
Baseline 75.95% 87.87% | 74.72% 54.44% 68.89% 70.00%
Daietal. [3] | 58.25% 82.96% | 42.78% 36.11% 27.50% 52.50%

Table 1. Experimental results (CCR).

ing (220 cm above the floor) of a room. The dataset includes
four actions: “Walking”, “Sitting down”, and “Standing up”
as daily actions, and “Falling down” (while subjects per-
form Walking or Standing up) as an abnormal action. In
addition, in order to evaluate whether the proposed method
can learn the temporal change of a motion, the dataset in-
cludes “No action” (i.e. standing, sitting, or lying) class.
These action samples were collected from nine subjects,
each of whom repeated each action forty times (For “No
action”, standing, sitting, and lying were performed forty
times each). Overall, the dataset contained 2,520 sequences.
Half of them were performed in daytime and the others at
night in the dark. Figure 8 shows examples of “Falling
down” in the dark. To prevent from making an action depen-
dent from the position that it occurred, these actions were
performed in various directions and at various positions in
the room. The number of frames included in each sequence
was between 10 and 50.

5.2. Experimental condition

In order to analyze the effectiveness of combining ther-
mal images and frame differences, the proposed method
was compared with the baseline and two variations of the
proposed method (“Thermal only” and “Diff. only”). Fur-
thermore, the proposed method was compared with the
method by Dai et al. [3] that uses a nearest-neighbor clas-
sifier. In the experiment, the same background subtraction
method was used for all methods for fair comparison. The
conditions of the methods are summarized as follows:

e Proposed: Input of the network is both the cropped
thermal and the frame difference image sequences.

e Thermal only: Input is only the cropped thermal image
sequence (without frame difference).

e Diff. only: Input is only the cropped frame difference
sequence (without thermal image).

e Baseline: Input is the entire 16x 16 thermal image se-
quence (without cropping nor frame difference).

e Dai et al. [3]: Multi-templates and nearest-neighbor.

We performed leave-one-person-out cross-validation and
computed the Correct Classification Rate (CCR) to measure

the performance. During the network training, data aug-
mentation was performed by shifting +1 pixel in each of
the x, y axis directions.

5.3. Results and discussions

Table 1 shows the experimental results. As shown in
this table, the proposed method achieved significantly good
overall performance; more than 30% higher than Dai et
al. [3]. We consider that the proposed network could learn
both appearance and motion features for discriminating ac-
tions.

By comparing “Thermal only” and “Diff. only”, it can
be observed that “Thermal only” tends to show higher per-
formance on “Sitting down,” “Standing up”, and “Falling
down”. We consider that using thermal images is effective
for actions which can be discriminated by changes in ap-
pearance or posture.

It can also be observed that “Diff. only” tends to show
higher performance on “No action” and “Walking”. We
consider that this is because using frame differences is ef-
fective for actions which can be discriminated by motion
features.

Here, “Proposed” is superior to both “Thermal only” and
“Diff. only” methods for most action classes. Therefore, by
combining thermal and frame difference images, the net-
work could learn features that can not be obtained by using
each feature individually.

5.4. Effectiveness of the combination of CNN and
LSTM

In order to analyze the effectiveness of combining con-
volution layers and an LSTM layer, three network architec-
tures were compared. The first architecture is a network
where the LSTM layer of the proposed network is replaced
by a fully-connected layer. The number of units and the
activation functions are the same. In this architecture, T’
images in a sequence are individually classified and scores
of the actions are calculated. Then, the final classification is
done by averaging the scores. The second architecture is a
network where the convolution layers of the proposed net-
work are replaced by fully-connected layers. The number of
units of the fully-connected layers is set all to 256. In this
architecture, an image of 10x 10 pixels for two channels is



’ Network architecture \ CCR ‘
CNN (without LSTM) 67.29%
LSTM (without CNN) 46.94%
CNN + LSTM (Proposed) | 91.07%

Table 2. Results from each network architecture.

input to the network as a 200-dimensional vector. The third
architecture is the proposed network architecture as shown
in Figure 6.

As shown in Table 2, the proposed network architecture
achieved the best performance. Furthermore, the perfor-
mance was improved by combining convolution layers and
an LSTM layer compared with the case without using each
layer. This is because the convolution layers could learn
appearance features, and the LSTM layer could learn tem-
poral variations throughout the sequence. Therefore, the
network could learn spatio-temporal representation by com-
bining these layers for discriminating actions.

6. Conclusion

This paper proposed an action recognition method for
extremely low-resolution thermal image sequences. To
learn the spatio-temporal representation of a sequence, we
proposed a Deep Learning-based method that combined
convolution layers, whose inputs were the thermal images
and their frame differences cropped by the gravity center of
human regions, and an LSTM layer. Experimental results
showed the effectiveness of the proposed approach.

As future works, we will consider a more suitable net-
work architecture to improve the performance. We will also
consider additional action classes that are similar to “Falling
down” (e.g., “Sitting up”, and “Lying down”). Furthermore,
we expect to realize a practical action detection system by
applying the the proposed method.
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