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Abstract— Pedestrian detection is an active research topic for
driving assistance systems. To install pedestrian detection in a
regular vehicle, however, there is a need to reduce its cost and
ensure high accuracy. Although many approaches have been
developed, vision-based methods of pedestrian detection are
best suited to these requirements. In this paper, we propose the
methods based on Convolutional Neural Networks (CNN) that
achieves high accuracy in various fields. To achieve such gener-
alization, our CNN-based method introduces Random Dropout
and Ensemble Inference Network (EIN) to the training and
classification processes, respectively. Random Dropout selects
units that have a flexible rate, instead of the fixed rate in
conventional Dropout. EIN constructs multiple networks that
have different structures in fully connected layers. The proposed
methods achieves comparable performance to state-of-the-art
methods, even though the structure of the proposed methods
are considerably simpler.

I. INTRODUCTION

In driving assistance systems, object detection is generally
conducted using Light Detection and Ranging (LIDAR) or
vision-based approaches that use single or multiple frames
recorded by an in-vehicle camera. LIDAR captures a three-
dimensional point cloud from the light reflected by an object.
Google automatic driving system employs LIDAR because
it records high-quality depth information and is adequate
in the research field. However, LIDAR is a very expensive
technology for regular vehicles.

There are two approaches using in-vehicle cameras: meth-
ods based on a single frame and those based on multiple
frames. Although single-frame methods enable real-time
detection, it is required that improve the detection accuracy
in various situations. On the other hand, multiple-frame
techniques achieve high detection accuracy via the use of
motion and context information. The motion information
is extracted from the optical flow, and context information
is estimated by superpixels. These techniques extract rich
information, but are time consuming. In addition, the motion
information requires corresponding points between frames to
be detected. Single-frame methods can be combined with
other approaches. For example, LIDAR-based approaches
use single-frame pre-processing to reduce the search region.
In this paper, we consider a single-frame method with the
aim of popularizing driving assistance systems based on in-
vehicle cameras.

The combination of Histograms of Oriented Gradients
(HOG) features and Support Vector Machines (SVM) has
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commonly been used for pedestrian detection [1]. HOG
features focuses on the gradient of the local region, and is
robust to small variations in pose. Following Dalal work,
several related approaches have been proposed [2] [3] [4]
[5]. To handle large pose variations, Felzenszwalb proposed
the Deformable Part Model (DPM) [2], which detects pedes-
trians with a whole pedestrian model and part regions.
DPM attained the best performance in a pedestrian detection
benchmark.

Pedestrian detection based on Deep Convolutional Neural
Networks (CNN) achieved the high detection accuracy in
the pedestrian detection benchmark [6]. The CNN proposed
by LeCun has been attracting attention [7], and Krizhevsky
applied CNN to object recognition [11]. The CNN employs a
Rectified Linear Unit (ReLU) as an activation function, and
uses Dropout to obtain generalization [8]. Dropout randomly
removes a fixed ratio of units. This ratio is usually set to 50%,
and the response value of selected units is zero. Different
units are selected in each iteration of the training process.
Although networks trained with Dropout exhibit improved
generalization performance, this random selection is only
applied to the training process.

In this paper, to achieve better generalization, we propose
Random Dropout and Ensemble Inference Network (EIN)
for the training and classification processes, respectively.
Random Dropout selects units at random with a flexible rate,
instead of the fixed rate used in conventional Dropout. EIN
constructs multiple networks that have different structures in
fully connected layers. In the remainder of this paper, we first
describe some related work on conventional CNN. We then
introduce the proposed Random Dropout and EIN method.
Finally, we investigate the architecture of EIN through a
series of experiments, and compare the performance of the
proposed technique with that of state-of-the-art methods.

II. RELATED WORKS

Object detection is a fundamental topic in pattern recog-
nition. Pedestrian detection based on boosted cascade clas-
sifiers was proposed by Snow [10], with Haar-like features
used to extract differences between frames. Although this
approach is as fast as boosted cascade-based face detection,
it is not especially accurate.

Dalal et al. have proposed HOG features that capture
gradient information of small regions [1]. These features
are robust to variations in the appearance of pedestrians.
The SVM classifier is trained using HOG vectors. The
combination of HOG features and the SVM classifier has
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Fig. 1. Conventional CNN architecture

become popular in the field of pedestrian detection. There
are many extensions to Dalal approach [3] [5] [4].

DPM archives high accuracy pedestrian detection that is
robust to pose variations [2]. It estimates probabilities across
the whole pedestrian region and some part regions at the
same time, and uses these to detect pedestrian regions. The
whole pedestrian model and each part region are based
on HOG features extracted from several resolutions. DPM
recorded the best performance in the pedestrian detection
benchmark in 2010. In addition, DPM has been applied to
point clouds captured from LIDAR [12]. Instead of HOG
features, this point cloud-based DPM uses the number of
points in each cell as a feature.

Conventional methods consist of feature extraction, which
is manually designed, and trained classification, which is
based on machine learning techniques. In particular, feature
design requires human knowledge to ensure robustness. To
overcome this problem, deep learning-based approaches have
attracted attention. Deep learning, especially in CNN, has
excellent feature representation and classification abilities.
Krizhevsky has shown the potential of CNN in a 1000-
class object recognition benchmark (ILSVRC). After this
breakthrough, Deep Learning approaches have been applied
to many problems, such as house number recognition, scene
labeling, and object detection. Ouyang et al. proposed the
concept of Joint Deep Learning, which is based on hierarchi-
cal neural networks. First, features are extracted from partial
pedestrian regions, and these are then combined hierarchi-
cally. Joint Deep Learning is robust to pose variations, and
recorded the top score in the Caltech pedestrian benchmark
. R-CNN is one of the best detection approaches based
on Deep Learning [13]. This method determines regions of
interest in an image using the superpixel method, and extracts
features using CNN. The extracted features are passed to an
SVM that is trained for each object and, finally, the specific
object position is detected. Although Joint Deep Learning
and R-CNN are capable of highly accurate pedestrian detec-
tion, their networks have a complicated structure.

III. CONVOLUTIONAL NEURAL NETWORK

As shown in Fig. 1, The CNN contains an alternate
succession of convolutional layers and Pooling layers. This
is based on the notion of local receptive fields discovered by
Hubel [14]. There are several types of layers, including input
layers, convolutional layers, pooling layers, and classification
layers. Besides the raw data, each input layer also takes edges
and normalized data. The convolutional layer has M kernels

with size Kx×Ky that are filtered in order to input data. The
filtered responses from all the input data are then subsampled
in the pooling layer. Scherer [15] found that max pooling
can lead to faster convergence and improved generalization,
and Boureau [16] analyzed theoretical feature pooling. Max
Pooling outputs the maximum value in certain regions, such
as in a 2× 2 pixel. Convolutional layers and pooling layers
are laid alternately to create the deep network architecture.
Finally, the classification layer outputs the probability of each
class through a softmax connection of all weighted nodes in
the previous layer.

CNN utilizes supervised learning in which filters are
randomly initialized and updated through backpropagation
[17]. The Backpropagation estimates the connected weights
and minimize E by gradient descent as shown in Eq. (1) and
Eq. (2).

E =
1
2

N∑
n=1

En (1)

W(l) ←W(l) + ∆W(l) = W(l) − η
∂En

∂W(l)
(2)

Note that {n|1, ..., N} is the training sample. η is the
training ratio, W(l) is the weight that connects in layer l
to the next layer (l + 1). The error for each training sample
En is the sum of the differences between the output value
and the label. ∆W(l) is represented as shown in Eq. (3).

∆W(l) = −ηδ(l)y(l−1) (3)

δ(l) = eφ(A(l)) (4)

A(l) = W(l) · y(l−1) (5)

y(l−1) is the output in the (l−1)th layer and e is the output
nodes error. A(l−1) is the accumulated value connected to
node from all nodes in the (l−1)th layer. The local gradient
descent is obtained by Eq. (4). The activation function
φ may be a sigmoid, hyperbolic tangent, or ReLU [11].
The connected weights in the entire network are updated
concurrently for a predetermined number of iterations, or
until some convergence condition is satisfied.

Dropout is an efficient method to reduce over-fitting and
improve generalization [8]. It randomly selects units with
a probability of 50%. The features of the selected units
are then used for optimization during each iteration of the
training process. Dropout is also used for training in the fully
connected layer.

IV. PROPOSED METHOD

We propose two techniques based on Dropout: Random
Dropout for the training process, and Ensemble Inference
Network (EIN) for the classification process. Details of these
techniques are as follows.
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A. Random Dropout

Conventional Dropout consists of setting the output of
each hidden unit to zero with a fixed probability (usually
50%). The hidden units that are set to zero are randomly
selected in each iteration. Dropout produces robustness by
neglecting certain information from the layer below. We
extend this Dropout technique by applying a random prob-
ability in each iteration to give Random Dropout. Figure 2
illustrates the update process in conventional Dropout and the
proposed Random Dropout. Whereas conventional Dropout
always sets 50% of the units to zero, Random Dropout
applies a different ratio for each iteration. We first define

the Random Dropout probability as between 30% and 70%.
We set this ratio to 60% and 30% for each layer in the first
iteration, then change this to 40% and 70% for each layer in
the second iteration. For example, we set this ratio to 60%
and 30% for each layer in the first iteration, then change
this to 40% and 70% for each layer in the second iteration.
We aim to obtain generalization using a flexible Random
Dropout ratio.

B. Classifier using EIN

EIN is intended to remove connections from the previous
layer, similar to Dropout, in the classification process. We
randomly select units whose response value is set to zero
with 50% probability. The classification process of conven-
tional CNN feeds the input values to the trained network
immediately. Unlike conventional CNN, EIN feeds the input
value to the fully connected layers of the trained network
at different times. At each time, some units of the fully
connected layers are randomly set to zero. In other words, our
method forms different networks from the original trained
network by randomly selecting different units. We compare
the decision manner based on median, mean or maximum
for pedestrian detection independently in experiments. The
steps of the EIN process are as follows.

1) Feature maps: First, the input image I is convoluted
with filter V, and feature maps are generated with activation
function φ, as shown in Eq. (6).

h = φ
(
VT I + b

)
(6)

Here, b is a bias term. We employ the Maxout activation
function [9], which selects the maximum value from K
feature maps at each unit, as shown in Eq. (7).

h′
i = max

k∈[1,K]
hik (7)
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We utilize max pooling to select the maximum value in each
certain region, and obtain robustness against small shape
variations by resizing the feature map, as shown in Eq. (8).

h′′
i = max

p∈Pi

h′
p (8)

Although units in the fully connected layer will change
according to the random selection, the convolution layer and
pooling layer remain the same. Thus, we can share the output
values from the final pooling layer.

2) Structured by some networks: The response of ran-
domly selected units is set to zero in the fully connected
layer and classification layer, as shown in Eq.(9).

h
(l)
j = φ

(
W(l)x + b(l)

)
·m(l)

j (9)

Note that the feature map obtained in Step 1 is defined as
x. Wl and bl are the connection weights and bias of the
lth layer, respectively. m controls the response value hl

j , and
is set to 0 or 1. When m is set to 0, the response value
is 0, and when m is set to 1, the response value is 1. We
construct N networks with randomly selected zero-response
units. The probability of each class in network n is given by
the soft-max function in Eq. (10).

Onc =
exp

(
W(L)

j h(L)
j + b

(L)
j

)
∑C

c=0 exp
(
W(L)

c h(L)
c + b

(L)
c

) (10)

3) Finaly output Classifier value: The final output class
is obtained from the probability Onc for each class in each
network. All Onc stored into probability set sc and median
is selected SMedian

c from them.

V. PEDESTRIAN DETECTION USING PROPOSED METHOD

For pedestrian detection, we employ sliding window ap-
proach to detect multiple pedestrians at different scale. In
the detection process, it is necessary to distinguish whether
pedestrians are present or not in a huge number of windows.
We apply a HOG+SVM classifier to reduce the processing
time to find pedestrian candidate regions and the proposed
CNN is applied to them. The proposed CNN is applied to
pedestrian candidate windows.

VI. EXPERIMENTS

We evaluate the performance of Random Dropout and
EIN using the Caltech Pedestrian Dataset and Daimler
Mono Pedestrian Benchmark Dataset. In addition, we eval-
uate the efficiency of Random Dropout and several EIN
architectures that have a different number of networks
and different final output decisions (maximum or aver-
age). We also compare the proposed method with, CNN,
HOG [1], HogLbp [3], LatSvm-V2 [2], VJ [10], DBN-
Isol [25], ACF [26], ACF-Caltech [26], Pls [20], FPDW [22],
ChuFtrs [18], CrossTalk [19], RandomForest [5], Mul-
tiResC [21], Roerei [23], MOCO [27], Joint Deep [6]
and Switchable Deep Network [28] for Caltech Pedes-
trian Dataset. For the Daimler Mono Pedestrian Benchmark

TABLE I
USING CNN STRUCTURES

Caltech
Dataset

Daimler
Dataset

Input 108 × 36 × 3 96 × 48 × 1
Weight Filter 40, 9 × 5 100, 5 × 3

Layer 1 Max Pooling 2 × 2 2 × 2
Maxout 2 2

Weight Filter 64, 5 × 3 80, 5 × 4
Layer 2 Max Pooling 2 × 2 2 × 2

Maxout 2 2
Weight Filter 32, 3 × 3 70, 5 × 4

Layer 3 Max Pooling 2 × 2 2 × 2
Maxout 2 2

Layer 4 # of Fully connected 1,000 1,000
Layer 5 # of Fully connected 500 500
Layer 6 # of Fully connected 100 100
Output Softmax 2 2

Dataset, we compare with CNN, HOG [1], Shapelet [29],
HogLbp [3], LatSvm-V2 [2], VJ [10], RandomForest [5],
MultiFtr [30], and MLS [4].

The structures of CNN are shown in Table 1. The Caltech
Pedestrian Dataset has 4,000 positive samples and 200,000
negative samples for training, and 8,273 test images. We
augmented 101,808 positive samples from the originals by
shifting, rotation, mirroring, and scaling. For the Daim-
ler Mono Pedestrian Benchmark Dataset, we augmented
250,560 positive samples from 31,320 samples; the dataset
also has 254,356 negative samples. The total iteration of up-
dating parameters is 500,000 with 5 minibatchs and training
ratio η is set to 0.01.

A. Performance comparison with the number of networks

First, we consider the best architecture of EIN by changing
the number of networks and the determining way of final
output. We evaluate the architectures of EIN that contain
network from 1 to 33. Each network retained the same
structure in the convolutional layer and pooling layer, but
the fully connected layers varied according to the random
selection of units. When the number of networks is 1, we
have a conventional network. We select the mean probability
from all networks. Figures 4(a) and (b) show the evaluation
results using the Caltech Pedestrian Dataset and Daimler
Mono Pedestrian Benchmark Dataset, respectively. First, the
difference between the solid and broken lines indicates the
performance of Dropout and Random Dropout. In Caltech
Pedestrian Dataset case, we can see that Random Dropout
improves the accuracy by about 6%. The architecture that has
33 networks with mean selection achieves the best accuracy,
a miss rate of 37.77% with the Caltech Pedestrian Dataset.
From this evaluation, EIN with multiple networks and dif-
ferent structures in the fully connected layers obtains better
detection accuracy. In Daimler Mono Pedestrian Benchmark
Dataset, whereas the miss rate of CNN are 35.78%, our
methods significantly improves to 31.34% at 33 ensemble
networks with mean decision manner.
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Fig. 5. Compare proposed methods and conventional methods

B. Performance comparison with conventional methods

We compare our method with state-of-the-art methods us-
ing the Caltech Pedestrian Dataset. As shown in Figure 5(a),
with an FPPI of 0.1, our method gives a 10.5% increase in
accuracy compared to conventional CNN. In addition, the
proposed method achieves similar performance to Switch-
able Deep Network, which constructs a complex network
structure. This demonstrates that a simple network architec-
ture is sufficient to achieve state-of-the-art performance in
Deep Learning methods. We show a comparison result on
Daimler Mono Pedestrian Benchmark Dataset in Figure 5(b).
FPPI is improved 2.0% accuracy than conventional CNN at
0.1, compared to CNN making the current Daimler Mono
Pedestrian Benchmark Dataset top performance, it improves
detection accuracy about 31.32% and archives comparable
performance to state-of-the-art methods.

Figure 6 shows a pedestrian detection result in Caltech
Pedestrian Dataset and Daimler Mono Pedestrian Benchmark

Detection. The results in the first and fourth columns are
examples of detection by HOG+SVM, second and fifth
columns are examples of detection by DPM. The pedestrian
detection result in the third and sixth columns are result of
the proposed methods. As shown Figure 6, while conven-
tional methods does not detect small pedestrians, proposed
method detects them in same scene. The proposed methods
are capable to detect hard situation such as occlusion, various
poses. Moreover, it can reduce the false positive.

VII. CONCLUSION

We proposed two techniques for improvement of pedes-
trian detection by random selection of the units based on the
Dropout. Random Dropout that is randomly setting corre-
sponding value of the units to zero with flexible rate. EIN
constructs multiple networks that have different structure in
fully connected layer with decision manner of final output.
We achieve the comparable performance to state-of-the-art
methods in Deep Learning approach, even the structure of
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Fig. 6. Visualized pedestrian detection

proposed methods are significant simple. In future work,
we will try to reduce the computational cost for real time
processing.
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