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ABSTRACT We address a new computer vision problem of subjective baggage-weight estimation, where
the term subjective weight is defined as how heavy the person feels. In this paper, we propose a method
named G2SW+ (Gait to Subjective Weight plus), which is an extension of our previous method, G2SW. The
method uses human walking behavior, including 3D locations and velocities of body joints and silhouettes,
as input. It estimates the subjective weight using a combination of a Convolutional Neural Network and a
Graph Convolutional Network. It also estimates human body weight and recognizes the type of baggage as
subtasks based on the assumption that body weight and type of baggage affect human gait. For the evaluation,
we built a dataset for subjective baggage-weight estimation, consisting of pairs of 3D skeleton and human
silhouette sequences with subjective weight, body weight, and baggage-type annotations. We confirmed that
the proposed method can accurately estimate the subjective baggage weight. Moreover, we confirmed that
training with the subtasks and utilizing the human silhouette sequence as an additional input improves the
performance of the subjective weight estimation.

INDEX TERMS Subjective baggage-weight, gait to subjective weight plus (G2SW+), human silhouette
image, graph convolution, multi-task learning.

I. INTRODUCTION feels when he/she has a piece of baggage would be valuable

In recent years, considerable attention has been paid to
the development of assistive robots [1], [2]. To realize this
assistance, the system should be environmentally aware and
provide proactive support. In this study, we focus on the
support provided by a robot to a person carrying heavy
baggage. To clarify the problem setting, we assumed a
situation in which one person walks with one piece of
baggage, as shown in Fig. 1.

To assist people in carrying heavy baggage, it is necessary
to develop robots capable of carrying such baggage; however,
it is also important to develop a function that determines
whether or not to support a person. How heavy a person
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information to determine. We named this subjective baggage
weight, which quantifies that sensation. The robot can decide
whether or not to provide support based on the person’s
estimated subjective weight. In this research, we focus on the
fact that subjective weight changes the human gait. Based on
the assumption, we have proposed G2SW (Gait to Subjective
baggage-weight), a network to estimate subjective weight by
human gait characteristics [3].

However, the G2SW still has two limitations. First, the
physique information is not included in the human skeleton
sequences. Although this method estimates body weight as
well as subjective weight, the input only contains information
on the human skeleton. Human skeleton information alone is
insufficient for weight estimation because it lacks body size
and strength information related to body weight.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. Estimation of the subjective baggage-weights from human gait.
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FIGURE 2. Example of the gait with the different types of baggage.

Second, the type of baggage is not considered, and the
information was assumed to be given. In practical cases,
recognizing the type of baggage is not trivial. As shown in
Fig. 2, human gait varies not only in body weight but also in
the type of baggage.

To address these limitations, in this paper, we propose
G2SW+- (Gait to Subjective Weight plus), which is a method
for estimating subjective weight from the human gait (Fig. 1),
by further extending the previous G2SW [3].

As noted above, physique information should be consid-
ered when estimating subjective weight. For this reason,
we also use a human silhouette image sequence for one
walking cycle as the input. A human silhouette image has
the advantage of representing physique information while
eliminating the background, clothing, and other information
that is not relevant to subjective weight estimation.

Subjective baggage-weight is also affected by not only
the body weight of the person but also the type of baggage.
To consider this in the estimation, the proposed method
simultaneously recognizes the type of baggage and estimates
the body-weight of the person as subtasks in the training
phase. Using the subtasks, the network is trained to consider
not only body weight but also the type of baggage in the
subjective baggage-weight estimation.

Note that this paper is an extended version of our previous
paper [3] with further improvements as follows:

o We propose G2SW+, an estimation method for sub-
jective baggage-weight from the human gait. The
method improves the previous method, G2SW, by using
physique information as additional input, and not only
body-weight estimation but also the type of baggage
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recognition are added as subtasks to focus on the

differences in the types of baggage and persons.
In the rest of the paper, Section II presents a liter-

ature review. Section III presents the proposed method,
which estimates subjective weights. Section IV presents
the experimental results and discussions. Finally, Section V
summarizes and discusses future issues.

II. LITERATURE REVIEW

A. ESTIMATION OF BAGGAGE WEIGHT

Yamaguchi et al. presented a technique for estimating the
weight of a piece of baggage based on body sway [4].
Body sway is the natural movement of a person’s body,
even when stationary and upright. This approach estimates
the weight of baggage by exploiting the characteristic that
heavier weight leads to greater body sway. However, this
technique is unsuitable for direct use in robotic applications
because it requires a bird’s-eye view of a stationary person.

Oji et al. presented a weight estimation method from lifting
motion [5]. This method estimates the weight of an object
from a hand motion by focusing on the fact that the hand
motion changes depending on the weight of the object when
lifting it up. However, because it requires a specific motion,
that is, object lifting, its applicability is limited.

We have proposed a method for estimating subjective
baggage weight, named G2SW [3]. This method uses a
human skeleton sequence, which represents human gait,
as the input. The method extracts the feature using a Graph
Convolutional Network from a sequence of one walking
cycle. To fix the number of frames while preserving speed
information, the method samples a fixed number of frames
from a walking cycle and builds a location-and-velocity graph
that represents the body joint locations and their moving
speeds. The method also considers the person’s body weight
as a subtask and achieves acceptable accuracy. However,
there is room for improvement because of the limitations
mentioned in Section I.

B. ACTION RECOGNITION BY A BODY SKELETON
SEQUENCE
A network architecture called Long Short-Term Memory
(LSTM), which captures temporal information, is often used
for action recognition from a skeleton sequence [6], [7],
[8], [9]. LSTM models are often used in skeleton sequence
recognition because they can effectively capture temporal
features. Katoh et al. [10] have proposed a gait style
recognition method based on the skeleton sequence. In this
study, onomatopoeia were used to describe motion styles. The
method employs an LSTM model to estimate onomatopoeia
from a skeleton sequence of walking. Nishida et al. [11] have
proposed a method that uses LSTMs to recognize whether a
person is using a white cane or not from gait. Multiple LSTMs
are used to tackle the problem of orientation variations of
people.

In recent years, graph convolutional networks (GCN)
consisting of graph convolution layers have been widely used
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in action recognition. It regards the skeleton as a graph. Each
body joint and each limb are represented as a vertex and
an edge in a graph, respectively. Yan et al. [12] introduced
STGCN, a technique for recognizing actions in skeleton
sequences by treating the sequence as a graph with temporal
connections. In this approach, the spatial characteristics are
obtained by employing graph convolutions on individual
frames. Subsequently, temporal convolutions are applied to
each temporal sequence of a body joint to capture temporal
traits. This approach allows the incorporation of skeletal
structure and motion information, thereby enhancing the
effectiveness of action recognition tasks.

Several methods have been developed based on the foun-
dation of the ST-GCN. Among these, one notable extension
is the multi-scale direction represented by MS-G3D [13].
The primary component of this method is the G3D mod-
ule, which is a variant of the I3D module [14] adapted
for graph convolutions. This module implements graph
convolutions over a spatio-temporal graph corresponding
to a skeleton sequence. The module is further extended
using multiple graphs of different multi-hop connections
to introduce a multi-scale aspect. Incorporating multi-hop
connections facilitates direct linkage between body joints that
are skeletally distant from each other but are relevant for
recognition tasks. The efficacy of the multi-scale strategy has
been demonstrated in diverse studies [15], [16], [17]. Another
direction of ST-GCN extension involves the integration of
an attention mechanism represented by STA-GCN [18]. This
method introduces attention nodes that gauge the significance
of body joints on a per-frame basis. Additionally, attention
edges are introduced to assess the pairwise significance of
joints, thereby capturing the relationships among joints that
carry varying degrees of significance for distinct movements.

ill. PROPOSED METHOD

A. OVERVIEW

This paper proposes a method for estimating the subjective
baggage-weight from the human gait, named G2SW+ (Gait
to Subjective Weight). In this study, we basically use a 3D
human skeleton sequence to represent human gait. A 3D
human skeleton sequence is a set of (X, Y, Z) coordinates
of joint locations in the global coordinate system. Here,
X!, Y/, Z)T denotes the location of the j-th body joint in
t-th frame. Additionally, noting that walking is a repetition
of two steps, we define two steps as one cycle of walking
and use the 3D human skeleton sequence S; for one cycle
of walking as the input. We also utilize a human silhouette
sequence, U; = {ui}, as the input for G2SW+-.

Figure 3 shows the flowchart of the training and estimation
steps of the proposed method. As a preprocessing, the
i-th 3D human skeleton sequence S; is converted into a
location and velocity graph S; as previous G2SW [3], and
the i-th human silhouette sequence U; is converted into a
mean silhouette image ;. Then the location and velocity
graph S’: and the mean silhouette image W; are input to
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TABLE 1. New borg scale.

Scale Description Scale Description
10 | Very, very Hard 4 | Somewhat Hard
9 3 | Moderate
8 2 | Light
7 | Very Hard 1 | Very Light
6 0.5 | Ver, very Light
5 | Hard 0 | Nothing at all

the subjective weight estimator (G2SW+) to estimate the
subjective weight. To train the G2SW+, we employ multi-
task learning that handles baggage-type recognition and body
weight estimation as subtasks.

In the following sections, we first define subjective weights
in Section III-B. Then, the preprocessing for the input is
explained in Section III-C. The network architecture and
multi-task learning are explained in Section III-D.

B. DEFINITION

In this study, we use the definition from our previous
study [3]. The subjective weight is defined as how heavy a
person feels. We employ the New Borg Scale [19] to quantify
subjective weight. Originally, the New Borg Scale quantifies
how hard the activity is, as shown in Table 1. Since we
considered that carrying a heavy baggage can be considered
as a hard activity, we employ the scale to quantify how heavy
a person feels, and the proposed method, G2SW+-, estimates
the value of the New Borg Scale.

C. PREPROCESSING

In the proposed method, a 3D human skeleton sequence of
one walking cycle and a human silhouette sequence of one
walking cycle are assumed to be cropped beforehand based
on the frame in which the positions of the left and right legs
are the most distant. The cropped 3D human skeleton and
silhouette sequences are then preprocessed separately.

For each 3D human skeleton sequence, following our pre-
vious work [3], we applied the following three preprocessing
steps:

1) location and orientation normalization,

2) velocity calculation,

3) frame sampling for a fixed length.

This preprocessing normalizes and enhances the input 3D
skeleton sequence. The output of the preprocessing is named
location-and-velocity graph S;. For the details, please refer to
the previous paper [3].

A body silhouette sequence is provided for a walking cycle.
We compute a mean silhouette image, which can represent
important gait features in a single image, known as Motion
History Image [20]. The calculation is as follows:

u=> v (1)

ufel/{,-
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FIGURE 3. The training and estimation processes of the proposed method.

D. THE PROPOSED G2SW+ AND ITS MULTI-TASK
TRAINING

In the proposed G2SW+, the subjective weight is estimated
from the location and velocity graph S;, and the mean
silhouette image u;.

The architecture of the proposed G2SW+ is shown in
Fig. 4. In the proposed G2SW+, a middle skeleton feature
representation in graph shape M; is calculated using a
GCN-based feature extractor f;,, and a skeleton feature
representation in graph shape P; is calculated using a
GCN-based feature refinement f, as

M; = fu(Si; Om, A), 2)
P; = f,(M;; 6,, A), A3)

where A denotes an adjacent matrix that defines the adjacency
of human body joints. These functions f, and f, consist
of multiple graph convolution layers. The proposed method
uses consecutive blocks of an MS-G3D module [13] for
these functions. Here, the sets of parameters in these
networks are represented by 6,, and 6,. After the MS-G3D
blocks, the graph-shaped outputs M;, P; are reshaped into a
1-dimensional vector m;, p;.

A physique feature representation a; is also calculated
using a CNN-based feature extractor f, as

a; = f,(W;; 6,), 4)

where 0, is a set of parameters of f,;.
The subjective weight wi is then calculated using the
fully-connected layers g;. At the same time, the body
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weight wf? and type of baggage k; are also calculated using
fully-connected layers g5 and gr. We use the concatenated
feature (p;, a;) as the input of g; and g, and concatenated
feature (m;, a;) as the input of gi, respectively.

Wf = gs((piv ai); es)a (5)
w? = gp((pi, a)); 6p), 6)
ki = gi((m;, a;); Ok). (7)

Here, because the recognition of the baggage type is quite a
different task from the others, it uses a shallower feature than
other tasks. These three functions g, gp, and g consist of
four fully-connected layers, whose parameters are 6, 6, and
Ok, respectively. Leaky ReLLU [21] is used as the activation
function for the hidden layers. The final layer uses a sigmoid
function as the activation function.

Given a batch of S;, 0, and corresponding sets of ground
truth of subjective weight, body weight, and type of baggage
!, Wf’ , andE), the network is trained in multi-task learning
manner. The parameters 6,,, 0, 04, 65, 05, and 6 are updated
using backpropagation to minimize the total loss L consisting
of subjective weight loss Ls, body weight loss Lj;, and
baggage-type loss Ly. Ly and L;, are the mean squared errors,
whereas Lj is a categorical cross-entropy loss represented
by h.

L = AsLg + ApLp + ALy, (8)

Ly = > (w} — )7, ©)
;
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FIGURE 4. Network architecture of the proposed G2SW+. This network accepts a location and velocity graph and a mean silhouette
image, and outputs the subjective baggage weight, body weight, and baggage type. The numbers on the arrows indicate the output

vector dimensions.

Ly= > (wf —Wh)?, (10)

Ly = ) h(ki, k), (11

where Ag, Ap, and Ar are the weights of the losses. These
weights are selected as the best of several combinations. Here,
the ranges of the subjective weights are normalized in the
range [0, 1]. The range of body weight is also normalized in
the range [0, 1], such that the maximum value in the training
data is 1 and the minimum value is 0.

IV. EVALUATION

A. DATASET

Because there are no publicly available that consist of 3D
skeleton sequences and silhouette sequences with annotations
of subjective baggage weights, we originally captured a
dataset for evaluation. Note that this dataset is an extension
of our previous dataset [3] by adding human silhouette
sequences. For the details, please refer to the previous paper.
Only the differences are described here.

In this study, we assume a situation in which one person
walks with a piece of baggage. The 3D human skeleton
sequences were collected by observing each participant
walking with a piece of baggage using a Microsoft Azure
Kinect sensor installed at a height of 2 m. A skeleton consists
of 32 body joints. The frame rate of the captured images
is 30fps. Fig. 5 shows the captured images, 3D human
skeletons, and human silhouette images for each type of
baggage. Detailed information, including the statistics of
the dataset is described in a previous paper [3]. To obtain
the silhouette images, we applied Mask R-CNN [22] to
every captured image. The silhouette images are resized to
128 x 128 pixels to input to the CNN.

In each session, each participant walked with a piece of
the prepared baggage. A short break was inserted after each
session to prevent the effects of the previous session. In this
experiment, 30 patterns (five baggage types x six weights
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(0-15kg)) of 3D human skeleton sequences were captured
for each subject.

All the participants consented to using and disclosing
their data for research purposes. It should be noted that the
Ethics Committee at Nagoya University has approved this
experiment.

B. EVALUATION PROTOCOL AND METRICS

In this experiment, following a previous paper [3], we per-
formed 5-fold cross-validation that split five people for
evaluation and the remaining 30 people for training from the
dataset.

Because of the limited number of preprocessed 3D human
skeletons, data augmentation was applied for training. From
the input 3D skeleton sequence of one walking cycle, three
frames were randomly dropped. We performed this ten times
for each walking cycle, thus increasing the data volume to
240,150 walking cycles. In the experiment, the frame length
of the location and velocity graph was set to M = 50 after
data augmentation.

We evaluated G2SW+- performance for subjective weight
estimation for each type of baggage. The mean absolute error
(MAE) of the estimation results was used as an evaluation
metric. It is defined as

N
1 ~
MAE = N z lwi — Wi, (12)
i=1

where N denotes the number of 3D skeleton sequences.

For practical application of deciding whether to support
a person, the performance of estimation within a tolerance
error threshold, named Tolerance Accuracy (TA), are also
introduced. It is defined as

NW,
TA; = 100 ,
N

13)

where t is the tolerance error threshold, and NW. represents
the number of data within the estimation error t.
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TABLE 2. Comparison of subjective weight estimation accuracy between G2SW+ and G2SW.

MSE] TA; 1 TA; 1 TA; t
G2SW+ 141 46.8 % 72.3% 87.5%
G2SW 1.44 46.2% 71.4% 86.9%
TABLE 3. Evaluation scores of G2SW+ for different baggage types (subjective weight: 0-10).
Type of Baggage MSE| TA| T TA 1 TA3 T
Handbag 1.47 44.2% 69.8% 86.4%
Shoulder bag 1.14 53.9% 80.9% 93.8%
Backpack 1.54 44.1% 69.5% 84.4%
Cardboard box 1.56 42.8% 68.6% 85.1%
Shopping basket 1.35 49.0% 72.6% 87.8%
Total 46.8% 72.3% 87.5%
Shopping basket Handbag
Physical weight Physical weight
Okg 15kg
Subjective weight Subjective weight
0 0
Shoulder bag Backpack
Physical weight Physical weight
7.5kg 10kg
Subjective weight Subjective weight
2 3

Cardboard box

Physical weight
12.5kg

Subjective weight
3

FIGURE 5. Examples of captured images and 3D human skeletons of each type of baggage.

C. MAIN TASK: SUBJECTIVE BAGGAGE-WEIGHT
ESTIMATION

Table 3 presents a comparison of the mean absolute errors
of the subjective weight estimation and Tolerance Accuracy
of T = 1, 2, and 3 between G2SW+ and G2SW. Figure 6
presents an example of the estimation results. From Table 2,
we confirmed that G2SW+- could estimate subjective weights
with a mean absolute error of 1.41 in the New Borg Scale
as the average of the entire baggage. G2SW+ achieved a
Tolerance Accuracy of 46.8% with T = 1(TAy), 72.3% with
T = 2(TA3), and 87.5% with T = 3(TA3) as the average of
the entire baggage. These accuracies were better than those
of G2SW.

D. DISCUSSION

Through the experiments, we confirmed that G2SW+- can
estimate the subjective weight better than G2SW.

VOLUME 12, 2024

1) EFFECTIVENESS OF SUBTASKS

In G2SW+, we used baggage-type recognition as a subtask,
in addition to weight estimation, which was used in G2SW.
To confirm the effectiveness of the subtasks, we compared
the proposed method with a method that did not use these
subtasks. Table 4 presents a comparison of the subjective
weight estimation accuracies with and without each subtask.
From the table, it was confirmed that the accuracy of
subjective weight estimation was improved by using not only
the body weight estimation but also the type of baggage
recognition as subtasks.

2) EFFECTIVENESS OF THE VELOCITY FEATURE

In the proposed method, we propose a location and velocity
graph to preserve velocity information in a fixed sequence
length for one cycle of walking. To confirm that the velocity
information is also valid when using the physique feature,
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TABLE 4. Comparison of subjective weight estimation accuracy with and without subtasks.

Body weight estimation ~ Type of baggage recognition MSE] TA; 1 TA; 1 TA3 1
v v 141 46.8% 72.3% 87.5%

v 1.43 46.5% 71.5% 86.8%

v 1.43 46.2% 71.4% 86.9%

1.43 46.1% 71.5% 87.2%

TABLE 5. Comparison of subjective weight estimation accuracy with and without velocity information.

MSE| TA| 1 TA, 1 TA3 T
with velocity 1.41 46.8% 72.3% 87.5%
without velocity 1.46 45.8% 70.7% 86.1%

TABLE 6. Comparison of subjective weight estimation accuracy with and without appearance information.

MSE| TA, 1 TA; 1 TA; 1
with physique feature 1.41 46.8% 72.3% 87.5%
without physique feature 1.46 45.8% 70.7% 86.1%

Ground Truth
10.0

Estimated

7.3

Ground Truth
4.0
&
Netaf
Estimated
3.7 4

Ground Truth
6.0

Estimated

5.6

Ground Truth
4.0

Estimated
4.3

Ground Truth
3.0

Estimated
2.9

FIGURE 6. Example of estimation results of subjective baggage-weight estimation.

we compared our method with a method that did not use
velocity information. Table 5 shows a comparison of the
subjective weight estimation accuracies with and without the
velocity information. From the table, it was confirmed that
the accuracy of subjective weight estimation was improved
by using velocity information as additional information when
using the physique feature.

3) EFFECTIVENESS OF THE PHYSIQUE FEATURE

In this method, we use physique information, which is
the human silhouette sequence, as the input to consider
body weight. To confirm the effectiveness of the additional
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physique features as inputs, we compared the proposed
method with a method that does not use physique informa-
tion. Table 6 presents a comparison of the subjective weight
estimation accuracy with and without physique information.
The table confirms that the accuracy of the subjective weight
estimation was improved by using physique information as
additional information.

4) CHALLENGES OF THE PRACTICAL USE

In the proposed method, G2SW+-, the estimation is per-
formed on the 3D skeleton and silhouette sequences for one
cycle of walking cropped from the sequence during walking.
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In contrast, several walking cycles can be obtained from a
captured walking sequence in practical applications. Thus,
multiple estimation results are obtained for a single sequence
during walking. In the future, an integration method for
multiple estimation results should be considered.

The 3D human skeleton sequences used in this study
were estimated using the Azure Kinect SDK; however,
the estimation failed in some cases. This was often the
case when the participants wore oversized clothes or
black facial masks. In practical applications, a system that
discards such estimations should be introduced to maintain
accuracy.

A further limitation is that the 3D human skeleton and
silhouette may not be accurately estimated in situations where
a person is carrying a very large load.

V. CONCLUSION

In this study, we proposed a subjective baggage-weight
estimation method named G2SW+, which is an extension of
G2SW, from human gait when a person is walking with a
piece of baggage. Because subjective weights affect human
gait, we employed a 3D human skeleton sequence in the
subjective weight estimation method to represent human gait.
In addition to the locations and velocities of body joints,
we also employed human silhouette sequences, which are
expected to represent the physique feature, as an additional
input. The estimation method G2SW+ was trained with
an additional subtask, baggage-type estimation, while the
previous G2SW was trained with a subtask, human body
weight estimation.

Future work includes a further update of the gait represen-
tation to more effectively describe the motion of skeletons by
analyzing the contribution of each body joint. Developing a
human support robot that uses this estimation method so that
the robot can decide whether or not to assist a person is also
future work.
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